3 Geotechnical investigation and evaluation - Geotechnical parameters of formations

(Relevant paragraph of the paper: GEOTECHNICAL EVALUATION AND GEOTECHNICAL DESIGN PARAMETERS)

The soil stratigraphy along the examined embankment, presented in the geotechnical longitudinal section (filename: 3-8_GEOTECHNICAL LONGITUDINAL SECTION.pdf), was determined based on the geological data and the laboratory test results of the evaluated boreholes. More particularly, the geotechnical evaluation of the investigation data was based on the following: a) the results of in situ and laboratory tests of sampling boreholes and b) the Geological Study and the technical-geological evaluation of boreholes.

The laboratory tests results regarding soil physical properties, soil mechanical properties and rock mechanics are summarized in the attached Tables 3-1, 3-2 and 3-3, respectively (Table 3-1_LabTests_SoilPhysicalProperties_All Samples.pdf, Table 3-2_LabTests_SoilMechanicalProperties_All Samples.pdf, Table 3-3_LabTests_RockMechanics_All Samples.pdf).

The laboratory test results conducted on soil and rock specimens are statistically evaluated by determining the minimum (min), maximum (max) and average value as well as the standard deviation for each layer and laboratory test separately. The results of the statistical elaboration for each layer and laboratory test (physical properties, mechanical properties, rock mechanical properties) of the examined embankment are summarized in Tables 3-5, 3-6 and 3-7 (Table 3-5_StatistAnalysis_SoilPhysicalProperties_Page1LayerI_Page2LayerII.pdf, Table 3-6_StatistAnalysis_SoilMechanicalProperties_Page1LayerI_Page2LayerII.pdf, Table 3-7_StatistAnalysis_RockMechanics_LayerIII.pdf).

Based on the above, the soil stratigraphy along the embankment from CH. 92+610 to CH. 93+870 includes the following layers:

- **Layer I**: Sand with gravels (Alluvial deposits of sandy-gravelly composition-ALsg). The formation is characterized as SAND of brown to brown-grey color with a small amount of silt and fine gravels of quartz and gneiss origin, loose to very dense, locally with gravels.
- **Layer II**: Clay and silt (CL-ML) (Alluvial deposits of silty-clayey origin-ALcm). The formation is characterized as firm CLAY and SILT of grey to brown color with sand and gravels.
- **Layer III**: Gneiss (gn). The formation is characterized as GNEISS of greenish-grey and white color, fractured, moderately weathered and locally weathered.

Based on the results of the statistical evaluation the following data have resulted:

Layer I: The percentage of gravels and sand ranges from 0% to 65.0% (average value 9.86%) and from 16.0% to 97.0% (average value 70.8%), respectively. The corresponding percentage of silt and clay ranges from 2.0% to 51.0% (average value 19.3%). The values of plasticity index (IP) of the layer ranges from NP to IP=30.0% (average value 2.77%), whereas the values of natural water (w) range from w=1.40% to 28.7% (average value 17.7%).

Layer II: The contained percentages of gravels, sand and fine material (silt and clay) for this layer range from 0% to 4.0% (average value 0.75%), from 2.0% to 46.0% (average value 24.17%) and from 54.0% to 98.0% (average value 75.1%), respectively. Values of plasticity index
(IP) range from NP to IP = 18.0% (average value 9.0%), whereas the values of natural water content (w) range from w = 19.60% to 41.0% (average value 33.5%).

Layer III: According to the laboratory tests results it is found that the values of unconfined compressive strength of the formation ranges from $q_{uc} = 14.3 \text{ MPa}$ to $q_{uc} = 44.5 \text{ MPa}$ (average value $q_{uc} = 28.0 \text{ MPa}$), whereas the average value of the point load index strength is equal to $I_{50} = 1.73 \text{ MPa}$ and $I_{50} = 1.79 \text{ MPa}$ parallel and vertically to the direction of drilling, respectively. Based on the rock mass classification of the Geological Study, the geological strength index of gneiss varies from $GSI = 27-37$, whereas $m_i = 9$.

In table 3-4 the depth at which each formation is encountered in the evaluated boreholes is presented.

<table>
<thead>
<tr>
<th>Table 3-4: Encountered formations in the evaluated boreholes of the embankment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borehole</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>M8</td>
</tr>
<tr>
<td>M12</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>M16</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>A2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>G-48</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>G-50</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>GN-1</td>
</tr>
<tr>
<td>GN-2</td>
</tr>
<tr>
<td>GN-3</td>
</tr>
<tr>
<td>GN-4</td>
</tr>
<tr>
<td>G103</td>
</tr>
</tbody>
</table>

The determination of the geotechnical design parameters of the encountered formations at the area of the embankment is given in detail in the following paragraphs. Geotechnical data from boreholes M8, M12, M16, A2 (executed for the current project) and data from boreholes G48, G50, GN-1 to GN-4 and G103 (executed for the adjacent project of Egnatia Highway) are co-evaluated.

For the determination of shear strength parameters (i.e. angle of internal friction and cohesion) laboratory test results from the following types of tests were taken into consideration (Greek Specifications for Soil Mechanics Laboratory Tests E105-86, 1986):

Triaxial tests (ASTM D2850):

a) Unconsolidated-undrained triaxial tests (UU triaxial tests)
b) Consolidated-drained triaxial tests (CD triaxial tests)
c) Consolidated-undrained triaxial tests with pore pressure measurement (CUPP triaxial tests)

Direct shear tests (ASTM D3080):

a) Unconsolidated-undrained direct shear tests (UU direct shear tests): Shearing is initiated immediately after the vertical load is imposed, therefore the tested sample is not consolidated.

b) Consolidated-drained direct shear tests (CD direct shear tests): After primary consolidation is completed, shearing is initiated. The selected displacement rate is relatively slow in order to avoid the development of excess pore water pressure at failure (drained conditions).

c) Consolidated-undrained direct shear tests (CU direct shear tests): After primary consolidation is completed shearing is initiated. The selected displacement rate is relatively quick resulting in the development of excess pore water pressure during shearing, thus inducing undrained conditions.

Layer I: Sand and gravels-Alluvial deposits of sandy-gravelly composition (ALsg)

This layer is further divided into sub-layers depending on the density, by taking into consideration the blow counts N_{SPT} of the standard penetration test.

- **Grain Size Distribution:** According to Unified Soil Classification System (USCS): mainly SM-SP and SM, SC with intercalations of GM-GP and ML, CL
- **SPT blow counts:**
 - N_{SPT}=9 (7 to 11): ALsg of loose deposition - **Layer Ia**
 - N_{SPT}=20 (7 to 51): ALsg of medium density – **Layer Ib**
 - N_{SPT}=56 (14 to REFUSAL): ALsg (dense) – **Layer Ic**
- **Bulk Density**
 - Wet: γ_w (kN/m³)=19.7 (from 17.5 to 22.0)
- **Plasticity Index:** I_p (%) =3 (from NP to 30)
- **Angle of internal friction φ’ and cohesion c’**
 - According to Scheidig: φ’=arctan(0.58-0.0045I)^p)=29°
 - According to Sowers: φ’=20+N/4 =22°: **Layer Ia**
 - φ’=20+N/4 =25°: **Layer Ib**
 - φ’=20+N/4 =34°: **Layer Ic**

![Diagram of angle of internal friction vs. plasticity index]

Geotechnical Design of Embankment: Slope Stability Analyses and Settlement Calculations (Xenaki, Doulis and Athanasopoulos)
From CU direct shear tests: $\varphi=39^\circ$, $c=27.6$ kPa (results from 17 tests)

- $\varphi_{\text{min}}=33^\circ$ (SP-SM sample) to $\varphi_{\text{max}}=45^\circ$ (SM sample)
- $c_{\text{min}}=5.0$ kPa (SP-SM sample) to $c_{\text{max}}=58.0$ kPa (SP sample)

From UU direct shear tests: $\varphi=37^\circ$, $c=26.5$ kPa (results from 13 tests)

- $\varphi_{\text{min}}=8^\circ$ (SC sample) to $\varphi_{\text{max}}=45^\circ$ (SP-SM sample)
- $c_{\text{min}}=2.0$ kPa (GC sample) to $c_{\text{max}}=78.0$ kPa (SM sample)

From CUPP triaxial tests: $\varphi'=40^\circ$, $c'=0$ kPa (results from 1 test on SM sample)

According to literature data (Soil Mechanics, Table 2, D. Valalas):
- for SM soil material: $\varphi'=34\pm 3^\circ$, $c'=0$ kPa
- for SP soil material: $\varphi'=36\pm 6^\circ$, $c'=0$ kPa
- for SC soil material: $\varphi'=32\pm 4^\circ$, $c'=0$ kPa
- for GM soil material: $\varphi'=36\pm 4^\circ$, $c'=0$ kPa
- for GP soil material: $\varphi'=33\pm 6^\circ$, $c'=0$ kPa

By taking into consideration the proposed empirical correlations, the laboratory test results and the variation of N_{SPT} values with depth, the following values are suggested:

Proposed design values:

- Layer Ia - ALsg of loose deposition: $\varphi'=29^\circ$, $c'=0$ kPa
- Layer Ib - ALsg of medium density: $\varphi'=32^\circ$, $c'=0$ kPa
- Layer Ic - ALsg (dense): $\varphi'=35^\circ$, $c'=0$ kPa

Compressibility Modulus E_s

From results of oedometer tests for stress value corresponding to the overburden stress of each specimen (results from 5 tests): $E_s=17620$ kPa

From empirical correlations by literature:

Layer Ia - ALsg of loose deposition (N=9):

- According to Tassios & Anagnostopoulos: $E_s=700$ (N=6)=10500 kPa (for coarse sand with N<15)
- According to Papadopoulos & Anagnostopoulos: $E_s=7500+800N=14700$ kPa (for sand)
- According to Papadopoulos & Anagnostopoulos: $E_s=2600+690N=8810$ kPa (for silty sand)
- According to Menzenbach: $E_s=7200+490N=11610$ kPa (for saturated sands)
- According to Bowles: $E_s=3750+250N=6000$ kPa (for saturated sand)
- According to Begemann: $E_s=1000$ (N=6)=15000 kPa (for sand with gravels)
- According to Menzenbach: $E_s=3800+1050N=13250$ kPa (for sand with gravels)
- According to Menzenbach: $E_s=1200+580N=6420$ kPa (for silts and silty sands with PI<15%)

Layer Ib - ALsg of medium density (N=20):

- According to Tassios & Anagnostopoulos: $E_s=4000+700$ (N-6)=13800 kPa (for coarse sand with N>15)
- According to Papadopoulos & Anagnostopoulos: $E_s=7500+800N=23500$ kPa (for sand)
- According to Papadopoulos & Anagnostopoulos: $E_s=2600+690N=16400$ kPa (for silty sand)
According to Menzenbach: \(E_s = 7200 + 490N = 17000 \text{kPa} \) (for saturated sands)
According to Bowles: \(E_s = 3750 + 250N = 8750 \text{kPa} \) (for saturated sand)
According to Begemann: \(E_s = 4000 + 1000 \text{ (N-6)} = 18000 \text{kPa} \) (for sand and gravels)
According to Menzenbach: \(E_s = 3800 + 1050N = 24800 \text{kPa} \) (for sand and gravels)
According to Menzenbach: \(E_s = 1200 + 580N = 12800 \text{kPa} \) (for silts and silty sands with PI<15%)

Layer Ic-ALsg (dense) (N=56):
According to Tassios & Anagnostopoulos: \(E_s = 4000 + 700 \text{ (N-6)} = 39000 \text{kPa} \) (for coarse sand with N>15)
According to Papadopoulos & Anagnostopoulos: \(E_s = 7500 + 800N = 52300 \text{kPa} \) (for sand)
According to Papadopoulos & Anagnostopoulos: \(E_s = 2600 + 690N = 41240 \text{kPa} \) (for silty sand)
According to Menzenbach: \(E_s = 7200 + 490N = 34640 \text{kPa} \) (for saturated sands)
According to Bowles: \(E_s = 3750 + 250N = 17750 \text{kPa} \) (for saturated sand)
According to Begemann: \(E_s = 4000 + 1000 \text{ (N-6)} = 54000 \text{kPa} \) (for sand with gravels)
According to Menzenbach: \(E_s = 3800 + 1050N = 62600 \text{kPa} \) (for sand with gravels)
According to Menzenbach: \(E_s = 1200 + 580N = 33680 \text{kPa} \) (for silts and silty sands with PI<15%)

Proposed design values:
- **Layer Ia-ALsg of loose deposition:** \(E_s = 7.0 \text{MPa} \)
- **Layer Ib-ALsg of medium density:** \(E_s = 14.0 \text{MPa} \)
- **Layer Ic-ALsg (dense):** \(E_s = 35.0 \text{MPa} \)

Layer II: Silt and Clay- Alluvial deposits of silty-clayey composition (ALcm)
- **Grain Size distribution:** According to USCS: mainly ML and CL
- **SPT blow counts:** \(N_{SPT} = 12 \) (6 to 19)
- **Bulk Density**
 - Wet: \(\gamma_w \text{ (kN/m}^3\text{)} = 19.6 \) (from 18.7 to 20.3)
- **Plasticity index:** \(I_p \text{(%)} = 9 \) (from NP to 18)
- **Angle of internal friction \(\varphi' \) and cohesion \(c' \)**
 According to Scheidig: \(\varphi' = \text{arctan}(0.58 - 0.0045I_p) = 28^\circ \)
According to Sowers: $\phi' = 20 + \frac{N}{4} = 23^\circ$

From CU direct shear tests: $\phi = 42^\circ$, $c = 15.0 \text{kPa}$ (results from 2 tests)

$\phi_{\text{min}} = 39^\circ$ (ML sample) to $\phi_{\text{max}} = 45^\circ$ (CL sample)

$c_{\text{min}} = c_{\text{max}} = 15.0 \text{kPa}$ (CL & ML samples)

From UU direct shear tests: $\phi = 50^\circ$, $c = 0 \text{kPa}$ (results from 1 test)

From CUPP triaxial tests: $\phi' = 31^\circ$, $c' = 3.0 \text{kPa}$ (results from 2 tests)

$\phi_{\text{min}} = 29^\circ$ (CL sample) to $\phi_{\text{max}} = 33^\circ$ (ML sample)

$c_{\text{min}} = 2.0 \text{kPa}$ (CL sample) to $c_{\text{max}} = 4.0 \text{kPa}$ (ML sample)

According to literature data (Soil Mechanics, Table 2, D. Valalas):

- for ML soil material: $\phi' = 33\pm4^\circ$, $c' = 0 \text{kPa}$
- for CL soil material: $\phi' = 27\pm4^\circ$, $c' = 20\pm10 \text{kPa}$

Based on the above the following values are proposed:

Proposed design values: $\phi' = 28^\circ$, $c' = 5.0 \text{kPa}$

These design values have resulted by mainly evaluating the results of laboratory tests and by also taking into consideration the empirical correlations. The results of CUPP triaxial tests are considered as most reliable for the determination of effective shear strength parameters, whereas the number of performed tests and the classification of each tested sample are also evaluated.

- **Undrained shear strength**

 From unconfined compression tests: $q_u(\text{average}) = 90.5 \text{kPa}$, therefore $c_u(\text{average}) = 45.3 \text{kPa}$

 $q_{u_{\text{min}}} = 38 \text{kPa}$

 $q_{u_{\text{max}}} = 143 \text{kPa}$ (ML sample)

 From UU triaxial tests: $c_u = 28.0 \text{kPa}$ (results from 3 tests)

 $c_{u_{\text{min}}} = 16.0 \text{kPa}$ (CL sample) to $c_{u_{\text{max}}} = 47.0 \text{kPa}$ (ML sample)

 Proposed design values: $c_u = 35.0 \text{kPa}$

- **Compressibility Modulus E_s**

 From results of oedometer tests for stress value corresponding to the overburden stress of each specimen (results from 5 tests): $E_s = 7500 \text{kPa}$

 From empirical correlations by literature:

 According to Menzenbach: $E_s = 1200 + 580N = 8160 \text{kPa}$ (for silt and silty sand, PI<15%)

 According to Begemann: $E_s = 1800 + 300N = 5400 \text{kPa}$ (silt with sand, N<15)

 According to Papadopoulos & Anagnostopoulos: $E_s = 3200 + 490N = 9080 \text{kPa}$ (sandy silt)

 Proposed design values: $E_s = 8.0 \text{MPa}$

- **Data from consolidation tests**

 Compressibility index: $C_c = 0.22$ (from 0.09 to 0.38)

 Initial void ratio: $e_0 = 0.90$ (from 0.64 to 1.10)

 Coefficient of consolidation: $C_v = 4.54 \text{ m}^2/\text{year}$ (from 2.89 to 6.47 \text{ m}^2/\text{year})

 Preconsolidation stress, p_c: low values (it is considered as normally consolidated clay)
The proposed design values for a) compressibility index, \(C_c \), b) initial void ratio, \(e_o \), and c) coefficient of consolidation, \(C_v \), are the average values from laboratory test results (from Page 2 of Table 3-6 StatistAnalysis_SoilMechanicalProperties_Page1LayerI_Page2LayerII).

Layer III: Gneiss (gn)

At the area of the examined embankment the bedrock is encountered at great depth from the ground surface and it is assumed that it does not affect the foundation of the embankment. Therefore the determination of the geotechnical parameters for this layer is not required.

The design geotechnical parameters of the encountered soil formations, used in the geotechnical calculations of the embankment, are summarized in the recapitulative Table 3-8. In this table the reduced values of the geotechnical parameters, which are used in slope stability analyses under static loading conditions according to Eurocode 7.1 (Design approach 3, DA-3), are also included.

The critical cross section of the embankment used in the geotechnical calculations is presented in Figure 3-1.

Table 3-8. Geotechnical design parameters of encountered formations

<table>
<thead>
<tr>
<th>Layer</th>
<th>Geotechnical design parameters (characteristic values)</th>
<th>Geotechnical design parameters (stability analyses according to Eurocode 7.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\gamma) (kN/m(^3))</td>
<td>(\phi') ((^o))</td>
</tr>
<tr>
<td>Ia / Sand & gravels-loose</td>
<td>19.7</td>
<td>29</td>
</tr>
<tr>
<td>Ib / Sand & gravels-medium</td>
<td>19.7</td>
<td>32</td>
</tr>
<tr>
<td>Ic / Sand & gravels-dense</td>
<td>19.7</td>
<td>35</td>
</tr>
<tr>
<td>II / CL-ML</td>
<td>19.6</td>
<td>28</td>
</tr>
<tr>
<td>III / gn</td>
<td>25.4</td>
<td>26</td>
</tr>
</tbody>
</table>

Figure 3-1. Critical cross-section used in the geotechnical calculations
Seismicity Data

According to Eurocode 8 the examined embankment passes through seismic Zone Z1.

The design ground acceleration, α_{gr}, on type A ground for seismic Zone Z1 is equal to $\alpha_{gr}/g=0.16$. This value is further increased for the other types of ground, by multiplying it with soil parameter $S>1.0$ (Eurocode 8). According to the “Final Geological Study – Seismicity Study” “due to the proximity of the project to an active seismotectonic fault, even if it is not characterized as seismically active, the design seismic action is taken increased by 25% according to the Greek Code for Seismic Resistant Structures (EAK 2000).” Therefore the design ground acceleration on type ground A is increased and taken equal to $\alpha_{gr}/g=0.20$.

According to Table 3.1 of Eurocode 8 (Part 1) (EN 1998-1:2004), the soil formations encountered along the examined embankment are classified in the following ground types (Table 4-9):

<table>
<thead>
<tr>
<th>Table 3-9.</th>
<th>Ground types according to Eurocode 8 (Part 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EARTHWORK</td>
<td>FORMATION</td>
</tr>
<tr>
<td>Embankment from CH. 92+610 to CH. 93+870</td>
<td>la</td>
</tr>
<tr>
<td></td>
<td>lb</td>
</tr>
<tr>
<td></td>
<td>lc</td>
</tr>
<tr>
<td></td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>III</td>
</tr>
</tbody>
</table>

Accompanying files

3-1. RECAPITULATIVE TABLE OF RESULTS OF LABORATORY TESTS - SOIL PHYSICAL PROPERTIES
Filename: 3-1_Table3-1_LabTests_SoilPhysicalProperties_All_Samples.pdf

3-2. RECAPITULATIVE TABLE OF RESULTS OF LABORATORY TESTS - SOIL MECHANICAL PROPERTIES
Filename: 3-2_Table3-2_LabTests_SoilMechanicalProperties_All_Samples.pdf

3-3. RECAPITULATIVE TABLE OF RESULTS OF LABORATORY TESTS - ROCK MECHANICS
Filename: 3-3_Table3-3_LabTests_RockMechanics_All_Samples.pdf

3-5. RECAPITULATIVE TABLE OF RESULTS OF STATISTICAL ANALYSIS OF LABORATORY TESTS - SOIL PHYSICAL PROPERTIES
Filename: 3-5_Table3-5_StatistAnalysis_SoilPhysicalProperties_Page1Layer1_Page2LayerII.pdf

Geotechnical Design of Embankment: Slope Stability Analyses and Settlement Calculations (Xenaki, Doulis and Athanasopoulos)
3-6. RECAPITULATIVE TABLE OF RESULTS OF STATISTICAL ANALYSIS OF LABORATORY TESTS - SOIL MECHANICAL PROPERTIES
Filename: 3-6_Table3-6_StatistAnalysis_SoilMechanicalProperties_Page1Layer1_Page2LayerII.pdf

3-7. RECAPITULATIVE TABLE OF RESULTS OF STATISTICAL ANALYSIS OF LABORATORY TESTS - ROCK MECHANICS
Filename: 3-7_Table 3-7_StatistAnalysis_RockMechanics_LayerIII.pdf

3-8. GEOTECHNICAL LONGITUDINAL SECTION.pdf
Filename: 3-8_GEOTECHNICAL LONGITUDINAL SECTION.pdf
List of symbols

c: cohesion
C\textsubscript{c}: compressibility index
C\textsubscript{u}: undrained shear strength
C\textsubscript{v}: coefficient of consolidation
E\textsubscript{s}: compressibility modulus
e\textsubscript{0}: initial void ratio
\gamma: bulk density
\phi: angle of internal friction

Relevant Reference

