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ABSTRACT: This paper examines and compares the minimum horizontal acceleration that is needed to initiate uplift of the 

single-nave barrel vault and of the rocking frame which are the two most common masonry structural systems used to bridge 

a span. The paper concludes that regardless of the direction of the rupture of the buttresses, the single-nave barrel vault 

uplifts with a seismic coefficient, ε, that is always smaller than the slenderness of the buttresses, s=b/h. In contrast, the 

rocking frame always uplifts with a seismic coefficient, ε=b/h, regardless of the mass of its prismatic epistyle; therefore, the 

rocking frame has a superior seismic performance than the single-nave barrel vault. 
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INTRODUCTION 

 

The planar seismic stability analysis of a masonry structure that does not sustain tension can be analyzed in two steps. Step 

(a) is an equivalent static-equilibrium stability analysis and deals with the calculation of the minimum horizontal acceleration, 

üg
up, that is needed to rupture the structure at a minimum number of locations which are sufficient to convert the structure 

into a mechanism. Step (a) is a purely geometric problem which is independent of the size (scale) of the structure and depends 

only on its “slenderness”. Step (b) deals with the post rupturing dynamic response analysis of the hinged structure that 
undergoes some rocking motion and involves the solution of the nonlinear equation of motion (Oppenheim 1992); while 

addressing satisfactorily the impact that happens whenever the motion reverses (De Lorenzis et al. 2007). Step (b) is a purely 

dynamic problem that involves the participation of the rotational inertia of the articulated portions of the hinged structure; 

therefore, the post dynamic stability of the hinged structure depends strongly on its size (Makris 2014a,b). 

 

This work focuses on identifying the lower hinging mechanism of the single-nave barrel vault that is a masonry arch supported 

on two vertical buttresses as schematically shown in Fig. 1(a,b). Accordingly, this work concentrates in addressing step (a) 

for the structural system shown in Fig. 1(a,b), since it is most relevant to a wide range of historic structures known as “single-

nave barrel vault” churches that were built in various parts of Europe as early as a millennia ago. For instance, Fig. 2(a) shows 

an exterior view of the church of Agia Marina, Frenaros, Cyprus of the 15th century, and Fig. 2(b) shows an exterior and 

interior view of the church of Saint Catherine, Larnaca, Cyprus of the 14th century. The configuration of an arch (or vault) 

that is supported on buttresses is also often encountered as a substructure of more complex masonry structures, such as 

romanesque or gothic cathedrals and byzantine churches, medieval palaces and castles or other simpler vaulted masonry 

structures which have been constructed throughout the world since the conception of the masonry arch (Huerta 2006, Roca 

et al. 2010). The planar analysis presented in this work assumes a plane-strain condition; therefore neglects the end-effects 

of the front and back walls. Accordingly, the rupturing values of the seismic coefficient, ε, computed in this work represent 

the low limit.  

 

The level of ground shaking that is needed to initiate rupturing as calculated in step (a) does not challenge the ultimate stability 

of the structure, given that the structure possesses further post-uplift dynamic stability; however, it addresses the issue of 
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locating the imminent hinges and rupturing of the masonry—an issue that is of utmost interest to the preservation efforts of 

cultural heritage. 

 

 
 

Figure 1. Single nave barrel vault subjected to a horizontal ground acceleration, üg=εg. (a) Horizontal rupture at the base 
of the buttress, (b) oblique rupture, (c) the rocking frame. 

 

 
 

Figure 2. (a) Exterior view of the church of Agia Marina, Frenaros, Cyprus (15th century) and (b) exterior and interior 

view of the church of Saint Catherine, Larnaca, Cyprus (14th century). 

 

STEREOTOMY AND HINGE LOCATION 

 

In a structure that does not sustain tension, the only seismic resisting action is its own weight. When the lateral seismic forces 

overcome the stabilizing gravity forces the masonry structure ruptures at a minimum number of locations creating the lower 

hinging mechanism. Clearly, when hinging is imminent, a masonry structure that has finite thickness may rupture in a variety 

of ways depending on the size of the individual stones and the configuration of the joints (Alexakis and Makris 2015). For 

instance, for the simplest masonry structure that is the monolithic free-standing column, there is only one joint—the interface 

at the base of the column and the location of the hinge—that is the pivot point at its base known a priori. Consequently for 

the monolithic, free-standing column with base, b, and height, h, step (a) introduced earlier reduces to a simple static moment 

equilibrium given that the minimum uplift horizontal acceleration is merely üg
up=g(b/h)=gtanα.  

 

In the case of a circular arched monolith (Makris and Alexakis 2013, Alexakis and Makris 2014) with embrace angle, β, 

midthickness radius, R, and thickness, t, that is about to become a four-hinge mechanism, rupturing can happen in a variety 

of ways—say radial ruptures or vertical ruptures. When hinging is imminent, the weights of the articulated portions of the 

arched monolith depend on the direction of rupturing (stereotomy). Accordingly, the direction of rupturing (stereotomy) 

dictates the exact locations of the imminent hinges; and once the hinging mechanism has been established, one can compute 

the minimum horizontal acceleration needed to overcome the stabilizing gravity forces. 

 

In the case of a masonry barrel vault, the arch atop the buttresses is constructed with voussoirs with finite size so rupturing 

along the radial direction is most realistic and is adopted in this study. At the same time a masonry buttress is not a monolithic 

column since it consists of individual stones placed roughly in horizontal courses and laid with or without mortar between 
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the stones. In the event that the buttress is built out of large masonry blocks the rupture may happen along the horizontal 

direction and uplift as a monolithic column as shown in Fig. 1(a). In the event that the buttress is built out of smaller stones 

and the mortar has decayed with time, the buttress is incapable to sustain any tension and eventually develops an elongation 

failure along the compression free region (Heyman 1992, Ochsendorf 2002, Ochsendorf et al. 2004, Makris and Alexakis 

2015) as shown in Fig. 1(b). 

 

When a buttress that supports an arch is subjected to lateral inertial loading there are two types of lateral loads. The first type 

of lateral load originates from the inclined thrust force due to gravity that the arch is transferring at its springing at the head 

of the buttress and the second type of lateral load is the lateral inertial load from the ground shaking. The thrust lines and 

elongation failures of masonry buttresses subjected to these two types of loads were reviewed recently by Makris and Alexakis 

(2015) and are summarized in Fig. 3. In this figure, b and h are the width and height of the buttress, s=b/h is the slenderness, 

T is the resultant thrust force applied at the head of the buttress, ε and q are coefficients of the uniform and inverse triangular 

lateral inertial loading, y(z) is the thrust line, where z is the independent variable (vertical axis) and y the dependent (horizontal 

axis), ty=Ty/(γbh) and tz=Tz/(γbh) are the normalized to the buttress weight horizontal and vertical components of the trust 

force T, where γ is the surface force density of the buttress and finally f(z) is the elongation fracture line that starts at a distance 

ze from the top of the buttress. Fig. 3 indicates that the inclined thrust force from the arch on the buttress (first row) creates 

an elongation failure that is a straight line (Ochsendorf et al. 2004); whereas, lateral inertial loads create elongation failures 

that are slightly curved lines. When the profile of lateral seismic loads is assumed uniform (second row), the elongation 

failure line is described by an error function (Heyman 1992), which is slightly concave outwards; whereas, when the profile 

of the lateral seismic load is an inverted triangle (third row), the elongation failure line can be only computed numerically 

(Makris and Alexakis 2015) and is slightly concave inwards. The three lines shown in Fig. 3 are mathematical results based 

on the idealization that the buttress is a continuous monolith that does not sustain tension. In reality, a masonry buttress 

consists of individual stones, some larger and some smaller and the elongation failure line may look more like the one shown 

in Fig. 4. Accordingly, in this study we examine the minimum uplift horizontal acceleration of a single-nave barrel vault 

where the “downstream” buttress may rupture either at its base with a horizontal rupture as shown in Fig. 1(a) or along a 

straight inclined rupture as shown in Fig. 1(b). 

 

In this paper the variational methodology advanced by Alexakis and Makris (2014) is employed to find the limit equilibrium 

configuration of the single-nave barrel vault shown in Fig. 1(a,b), given that the buttresses that support the arch may develop 

an oblique elongation failure (Heyman 1992, Ochsendorf 2002, Ochsendorf et al. 2004, Makris and Alexakis 2015). 

 

PHYSICALLY ADMISSIBLE HINGING MECHANISMS OF A SINGLE-NAVE BARREL VAULT 

 

Alexakis and Makris (2017) recently showed that there are only two physically admissible hinging mechanisms for the single-

nave barrel vault, as shown in Fig. 5. If an arch that is capable to support its own weight is relatively slender and/or the 

buttresses relatively stocky, a 4-hinge lateral mechanism develops only within the arch, as shown in Fig. 5-left (mechanism 

I), while the buttresses do not participate in the mechanism. This is precisely the problem of identifying the limit equilibrium 

state of a circular masonry arch under lateral inertial and gravity loads—a problem that has been studied by Clemente (1998) 

and more recently by the authors (Alexakis and Makris 2014), who presented a rigorous variational formulation in an effort 

to liberate the limit state analysis from the need to identify the limiting thrust line. Accordingly, the exact locations of the 

imminent hinges and the level of horizontal ground acceleration εg that is needed to mobilize the hinging mechanism I in Fig. 

5 has been presented in detail in the paper by Alexakis and Makris (2014). It is worth noting, as it was first recognized by 

Clemente (1998), that if the arch is subjected to a lateral load (say from the left to the right), the extreme right extrados hinge 

always happens at the right springing A, while the extreme left intrados hinge D may happen within the arch at a location 

above the left springing (“one springing mechanism”), or at the left springing (“two springing mechanism”). In that way, the 
location of hinge A is known, and the analysis searches for the three unknown locations of hinges B, C and D, together with 

the level of the lateral load that initiates the mechanism. 

 

If an arch capable to support its own weight is relatively thick and/or the buttresses relatively slender, the location of the 

extrados hinge A shall be transferred to the bottom right corner of the “downstream” buttress, in analogy with the arch 

mechanism, and the analysis searches again for the three unknown locations of hinges B, C and D, together with the level of 

the lateral load that initiates the mechanisms II, shown in Fig. 5-right. 

 

The next section applies the principle of stationary potential energy, initially employed in Makris and Alexakis (2012, 2013) 

and Alexakis and Makris (2013b) to calculate the exact location of the hinges and the level of the limit horizontal inertial 

loading, εg, for any given geometry of the single-nave barrel vault structure that does not sustain tension. 
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Figure 3. Thrust lines, fracture lines and expressions of the critical loads according to elongation failure of masonry 

buttresses with slenderness s=b/h when subjected to three different loading patterns. 
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Figure 4. Schematic of elongation failure of a buttress with variable stone size and nearly-zero tensile strength at the joints. 

 

 

Figure 5. Admissible hinging mechanisms for buttresses that are allowed to develop horizontal ruptures. 

 

MECHANISM II (SEMI-GLOBAL MECHANISM) THAT INITIATES A HORIZONTAL RUPTURE AT THE 

BASE OF THE BUTTRESS 

 

With reference to Fig. 6-right, consider a circular arch with embrace angle, β, mid-thickness radius, R, and thickness, t, that 

is supported on two rectangular buttresses with height, h, and width, b. The structure is subjected to a constant horizontal 

ground acceleration εg (say from the left to the right). Prior to hinging, the structure translates as a rigid body; therefore, the 

lateral inertial loading will assume a profile proportional to the vertical distribution of the mass. 

Moment equilibrium of segment 2 (segment BC) about hinge C gives 
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In Eq. (1), TBx and TBy are the cartesian components of the unknown thrust force TB acting at hinge B (Fig. 6 top-center), while 

W2, x2 and y2 are the weight and the cartesian coordinates of the center of gravity of segment 2, which are functions of the 

unknown rupture locations φ1 and φ2 (Alexakis and Makris 2017). Moment equilibrium of the combined segment 2-3 

(segment BCD) about hinge D gives 
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Figure 6. Formation of a four-hinge mechanism for the case where the buttresses are allowed to develop horizontal 

ruptures (right) or a straight oblique elongation failure (left) 

 

In Eq. (2), W2-3, x2-3 and y2-3 are the weight and the cartesian coordinates of the center of gravity of the combined segment 2-

3, which are functions of the unknown rupture locations φ1 and φ3 (Alexakis and Makris 2017). Moment equilibrium of 

segment 1 (segment AB) about hinge A gives 

 

0]cos)
2

(cos)
2

[(]sin)
2

(sin)
2

[(]cos)
2

[(]sin)
2

([ 111111 =−−+−−+−+−+−+−−+−+  
t

Rb
t

RT
t

Rh
t

RTxb
t

RW
t

RhyW ByBx

 
(3) 

 

In Eq. (3), βο=(π-β)/2 is the angle that forms the springing with the horizontal axis and W1, x1 and y1 are the weight and the 

cartesian coordinates of the center of gravity of segment 1, which are functions of the unknown rupture location φ1 (Alexakis 

and Makris 2017).  

 

Substitution of Eqs. (1) and (2) into Eq. (3) eliminates the unknown force components TBx and TBy and yields a transcendental 

equation which involves the geometric parameters β, t/R, b/R, h/R, the rupture locations φ1, φ2, φ3 and the seismic coefficient 

ε. In the event of a demand assessment analysis (i.e., find the level of loading that a given structure can sustain) the geometry 

of the buttressed arch is given and the analysis searches for the seismic coefficient ε that initiates the hinge mechanism. The 

solution of the above mentioned transcendental equation can then be expressed in the form  
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Our analysis proceeds with the application of the principle of stationary potential energy, which states that the geometrically 

admissible hinged mechanism is in an equilibrium state if and only if the total potential energy of the system is stationary 

(δV=0). Alexakis and Makris (2017) showed that the total potential energy, V, can be expressed as a function of the three 

unknown locations φ1, φ2 and φ3, and is stationary when (Shames and Dym 1985, among others) 
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Eq. (4) together with the three equations from the expression (5) (j=1,2,3) offer a 4x4 system that can be solved numerically 

and calculates the four unknowns ε, φ1, φ2, φ3 for a given geometry of the structural system (β, t/R, b/R, h/R). In addition, the 

following boundary conditions must be satisfied for mechanism II: 

 

  − 321  (6) 

 

Fig. 7 plots the seismic coefficient ε as a function of the arch thickness t/R for three values of the buttress height h/R=1, 1.5 

and 2 that correspond to the top, center and bottom graph respectively, for three values of the buttress width b/R=0.25, 0.5 

and 0.75 and for four values of the embrace angle β=180ο, 155ο, 125ο and 90ο with dark solid line, gray solid line, dark dashed 

line and gray dashed line respectively. Isolated symbols correspond to Discrete Element Method results discussed later. 

 

The lines with the positive slope correspond to the arch mechanism (mechanism I in Fig. 5) which is mobilized for relatively 

thin arches (low t/R). Clearly, in this mechanism the dominant parameter is the embrace angle of the arch. Smaller embrace 

angles increase considerably the seismic resistance of the arch. For the mobilization of mechanism I the geometry of the 

buttress is immaterial; therefore, the same lines appear at the top, center and bottom graphs of Fig. 7. 

 

If the arch is relatively thick, mechanism II (Fig. 5) is first mobilized, which corresponds to the slightly horizontal branches. 

Clearly in this mechanism there is a small dependence on the arch geometry (β, t/R), while the dominant parameters are the 

dimensions of the buttress. For example, a slight increase of the buttress width might result in a significant increase of the 

seismic resistance. Tall slender buttresses that support a masonry arch, commonly found in historic structures (e.g. the nave 

of cathedrals) are more likely to rupture, even with relatively low peak ground acceleration. 

 

This behavior is reminiscent to the behavior of the rocking frame which consists of two free standing columns (buttresses) 

capped with a rigid beam (epistyle) as shown in Fig. 1(c). The seismic response of the rocking frame was recently studied in 

depth by Makris and Vassiliou (2013, 2014) and it was shown that the uplift acceleration is üg
up=g(b/h), where, b, and, h, are 

the width and height of the vertical elements. When observing the results offered in Fig. 7, every family of lines that 

correspond to a given b/R is for a slenderness value of the buttress b/h=(b/R)(R/h). Accordingly, the three graphs (a), (b) and 

(c) shown in Fig. 7 indicate that the single-nave barrel vault hinges always at a lower value of the seismic coefficient that is 

capable to initiate uplift of the rocking frame, that is ε=b/h. 

 

It is worth mentioning that the structural system of the single-nave barrel vault was known to the ancient Greek builders as 

documented by the entrance arched structures to the stadium of ancient Olympia and Nemea shown in Fig. 8 (Alexakis and 

Makris 2013a). Nevertheless, the arch was not used by ancient Greek builders to bridge the span of consecutive columns 

appearing in the peristyle of Temples (Fig. 9(a)) as done later in history in the architecture of other civilizations (see for 

instance Fig. 9(b,c)). Perhaps the superior seismic performance of the rocking frame compared to that of the single-nave 

barrel vault explains the choice of ancient Greek builders to use massive prismatic epistyles to bridge the span of consecutive 

columns rather to build masonry arches as was done later in history. 

 

The first five columns of Table 1 present indicative values of the seismic coefficient ε and the rupture locations φ1, φ2 and φ3, 

for a single-nave barrel vault with buttress height h/R=1.5 and width b/R=0.5, for the case where the buttress is allowed to 

develop horizontal rupture. The arch thickness t/R is ranging from 0.025 to 0.25, and the embrace angle β from 90o to 180o. 

Gray-shaded rows with values in italic correspond to mechanism I (arch mechanism), while the rest correspond to mechanism 

II. As the embrace angle, β, is increasing, very thin arches are not capable to sustain their own weight and the corresponding 

rows have been omitted. Values in bold correspond to the case where angles φ1 or φ3 indicate rupture exactly at the right or 

left springing of the arch. The last column of Table 1 presents the uplift acceleration of a rocking frame with buttresses of 

corresponding slenderness, which is always higher than the uplift acceleration of the single-nave barrel. 

 

The Accompanying Datasheet of this paper presents values of the seismic coefficient ε and the rupture locations φ1, φ2 and 

φ3, for all nine buttress geometries of Fig. 7 (h/R=1, 1.5, 2 combined with b/R=0.25, 0.5, 0.75). 
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Figure 7. Seismic coefficient ε for different geometries of the single-nave barrel vault with buttresses that are allowed to 

develop horizontal ruptures. Lines: Results from the variational formulation. Isolated symbols: Results from the Discrete 

Element Method (DEM). 
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Figure 8. Views of ancient Greek masonry vaults. Left: entrance arch to the stadium of ancient Olympia. Right: the tunnel 

entrance of the stadium of ancient Nemea. 

 

 
 

Figure 9. (a) View of the Temple of Aphaia in Aegina, Greece. Its monolithic, free-standing columns support massive 

prismatic epistyles and the frieze atop, and the entire rocking frame remains standing for more than 2500 years. (b) 

Colonnade of the Roman Theatre of Ferento, Italy built during the 1st century AD. (c) The Eastern Colonnade of Dome of 

the Rock Islamic shrine, Jerusalem (11th century). 

 

MECHANISM II (SEMI-GLOBAL MECHANISM) THAT INITIATES AN OBLIQUE ELONGATION RUPTURE 

ALONG THE BUTTRESS 

 

A masonry buttress is not a monolithic column since it consists of individual stones placed roughly in horizontal courses and 

laid with or without mortar between the stones. In the event that the buttress is built out of large masonry blocks the rupture 

may happen along the horizontal direction and mobilize mechanism II shown in Fig. 5. In the event that the buttress is built 

out of smaller stones and the mortar has decayed with time, the buttress is incapable to sustain any tension and eventually 

develops an elongation failure along the compression free region (Heyman 1992, Ochsendorf 2002, Ochsendorf et al. 2004, 

Makris and Alexakis 2015). 

 

Assuming a triangular stress distribution along the horizontal layers of the buttress and with reference to Fig. 6-right, the 

compression free area originates at distance z from the head of the buttress, where the base of the triangular stress distribution 

is equal to the width of the buttress, b. Accordingly, point M is the intersection point of the base of the triangular stress 

distribution and the trust line, located at distance b/3 from the external side of the buttress. 

 

The most critical fracture passes through the bottom corner of the buttress, as shown in Fig. 6-right (see also Heyman 1992, 

Ochsendorf 2002, Ochsendorf et al. 2004, Makris and Alexakis 2015). The distance z can be calculated by taking moment 

equilibrium of segment 1z about point M (see Fig. 6-right), which gives 

 

In Eq. (7), W1z, x1z and y1z are the weight and the cartesian coordinates of the center of gravity of segment 1z (Alexakis and 

Makris 2017). 
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Table 1. Indicative values of the seismic coefficient ε and the rupture locations φ1, φ2 and φ3, for a single-nave barrel vault 

with buttress height h/R=1.5 and width b/R=0.5. The arch thickness t/R is ranging from 0.025 to 0.25, and the embrace 

angle β from 90o to 180o. Buttresses are allowed to develop either horizontal or oblique ruptures.  

 

  SNBV horizontal rupture of buttress  SNBV oblique rupture of buttress  Rocking Frame 

t/R  ε φ1 (o) φ2 (o) φ3 (o)  ε φ1 (o) φ2 (o) φ3 (o) z/h  

h

R

R

b

h

b
==  

β=90ο 

0.025  0.278 64.57 104.16 135  0.177 59.61 99.71 135 0.421  

0.333 

0.05  0.244 55.73 101.39 135  0.143 50.87 97.20 135 0.416  

0.075  0.221 50.18 99.62 135  0.123 45.45 95.60 135 0.426  

0.1  0.205 46.26 98.42 135  0.111 45 94.65 135 0.441  

0.125  0.195 45 97.61 135  0.106 45 94.20 135 0.459  

0.15  0.190 45 97.16 135  0.106 45 94.05 135 0.478  

0.175  0.188 45 96.95 135  0.109 45 94.09 135 0.496  

0.2  0.189 45 96.92 135  0.115 45 94.26 135 0.514  

0.225  0.193 45 97.01 135  0.123 45 94.53 135 0.531  

0.25  0.198 45 97.21 135  0.133 45 94.88 135 0.547  

β=125ο  

0.05  0.196 54.31 101.11 147.91  0.145 51.43 98.23 145.02 0.418  

0.333 

0.075  0.214 51.23 102.07 152.5  0.128 46.42 97.27 148.11 0.435  

0.1  0.198 47.43 101.17 152.5  0.118 42.99 96.75 150.50 0.455  

0.125  0.188 44.61 100.54 152.5  0.114 40.52 96.51 152.5 0.475  

0.15  0.183 42.47 100.13 152.5  0.114 38.70 96.46 152.5 0.493  

0.175  0.180 40.85 99.91 152.5  0.116 37.36 96.55 152.5 0.511  

0.2  0.180 39.63 99.82 152.5  0.121 36.40 96.73 152.5 0.527  

0.225  0.183 38.75 99.86 152.5  0.127 35.74 97.01 152.5 0.541  

0.25  0.187 38.14 99.99 152.5  0.134 35.34 97.36 152.5 0.555  

β=155ο  

0.075  0.077 43.53 94.38 145.23  0.077 43.53 94.38 145.23   

0.333 

0.1  0.188 46.91 100.67 154.42  0.112 42.65 96.41 150.16 0.432  

0.125  0.178 44.12 100.11 156.10  0.109 40.24 96.24 152.23 0.453  

0.15  0.172 42.01 99.78 157.55  0.110 38.48 96.25 154.02 0.472  

0.175  0.170 40.40 99.62 158.84  0.112 37.17 96.39 155.61 0.489  

0.2  0.169 39.19 99.60 160.00  0.116 36.22 96.63 157.04 0.504  

0.225  0.170 38.29 99.67 161.05  0.122 35.55 96.94 158.32 0.518  

0.25  0.173 37.64 99.82 162.00  0.128 35.12 97.30 159.48 0.530  

β=180ο  

0.125  0.064 37.64 93.64 149.63  0.064 37.64 93.64 149.63   

0.333 

0.15  0.144 40.44 98.21 155.99  0.093 37.53 95.30 153.07 0.421  

0.175  0.152 39.43 98.65 157.87  0.095 36.21 95.43 154.65 0.439  

0.2  0.151 38.17 98.58 158.99  0.099 35.24 95.65 156.05 0.454  

0.225  0.151 37.22 98.61 159.99  0.104 34.54 95.92 157.30 0.467  

0.25  0.153 36.53 98.71 160.89  0.109 34.05 96.23 158.41 0.479  

 

The rest of the process is identical to what has been presented earlier. The only difference is that in moment equilibrium 

equation of segment 1 (Eq. (3)) W1, x1 and y1 have changed due to the presence of the compression free area that does not 

participate in the mechanism (Alexakis and Makris 2017).  

 

Fig. 10 and columns 6 to 9 of Table 1 offer the corresponding critical values presented in Fig. 7 and columns 2 to 5 respectively 

for the case where the buttress develops an elongation failure. The lines with the positive slope of Fig. 10 that represent the 

arch mechanism (mechanism I in Fig. 5) remain the same; while, the slightly horizontal lines of mechanism II reveal a 

significant reduction of the seismic capacity due to the oblique elongation failure. The 10th column of Table 1 presents the 

dimensionless distance z/h. Isolated symbols in Fig. 10 correspond to Discrete Element Method results discussed later. 
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Figure 10. Seismic coefficient ε for different geometries of the single-nave barrel vault with buttresses that are allowed to 

develop an oblique elongation failure. Lines: Results from the variational formulation. Isolated symbols: Results from the 

Discrete Element Method (DEM).  
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VALIDATION OF THE DISCRETE ELEMENT METHOD (DEM) 

 

Over the last two decades an increasing number of engineers are using the Discrete Element Method (DEM) for the analysis 

of masonry structures and monuments in an effort to capture the discontinuous nature of masonry (Cundall 1971, Pagnoni 

1994, Lemos 1995, 2007, Papantonopoulos et al. 2002, among others). In this paper, the results presented in Figs. 7 and 10 

are compared with the results obtained with DEM analysis, where the commercially available software UDEC (Universal 

Distinct Element Code – Itasca Consulting Group, Inc. 2004) has been used. Recently, Alexakis and Makris (2016) presented 

a validation of DEM for the limit stability analysis of masonry arches where DEM reproduces the analytical results with 

remarkable accuracy. 

 

In order for the result of DEM to be comparable with those of limit equilibrium analysis, the stone blocks must be considered 

as rigid; whereas, the angle of friction between the joints, φ, must be large enough (e.g. φ≥80ο) to prevent sliding. In addition, 

the effect of the mortar has been neglected and the tensile strength, the cohesion and the dilatancy angle shall be zero.  

 

The method adopts an elastic behavior which leads to the need to define the normal-to-the-contact surface, Kn (normal 

stiffness), and the tangential-to-the-contact surface, Ks (shear stiffness), equivalent linear elastic constants. The variation of 

these values has marginal effect for the assessment of the limit state that is the minimum seismic coefficient ε and the 

imminent hinging mechanism. By using values between 107 Pa/m and 109 Pa/m the algorithm converges fast and with reliable 

results. In this analysis Kn=Ks=108 Pa/m. 

 

The material density does not appear in the equations of limit analysis, which is governed by geometry. The DEM confirms 

this behavior since very small or very large values of density have been tested without affecting the results of the limit 

equilibrium analysis. In this analysis the density was chosen to be 2000 kg/m3. Similarly, it was confirmed that the results of 

the analysis remain invariant to scale. It was chosen R=1m. 

 

Fig. 11 presents the discretized models that were used: (a) for the case where the buttresses are allowed to rupture horizontally 

at any height and (b) for the case where the buttresses are allowed to develop an oblique elongation failure. All voussoirs 

have size=5o, which means that the arches with embrace angle β=180ο, 155ο, 125ο, 90ο have 36, 31, 25, 18 voussoirs 

respectively. The same discretization was used by Alexakis and Makris (2014) satisfactorily to reproduce the collapse 

mechanisms of circular arches under lateral and gravity loads. The gravity load and horizontal inertia load corresponding to 

each block are applied as static loads at the center of gravity of each block. 

 

For case (a) all buttresses are divided into twenty identical rectangular blocks and one trapezoidal block at the head, as shown 

in Fig. 11(a). The circular and triangular points in Fig. 7 represent the results obtained with DEM for all the range of t/R 

values with step 0.025. The circular black dots correspond to the solid black line for β=180ο. The circular gray dots correspond 

to the solid gray line for β=155ο. The triangular black points correspond to the dashed black line for β=125ο. The triangular 

gray points correspond to the dashed gray line for β=90ο. The numerical solution of DEM is in excellent agreement with the 

theoretical solution from the variational formulation. It is confirmed that the buttress uplifts without developing any 

intermediate horizontal ruptures and the location of the 4 hinges match those predicted from the theoretical solution. 

 

 
 

Figure 11. Models used in DEM analysis with: (a) buttresses that are allowed to develop horizontal ruptures only; and (b) 

buttresses that are allowed to develop an elongation failure. 
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For case (b) a finer discretization was chosen for the buttress in order to capture the diagonal failure, as shown in Fig. 11(b). 

In principle, the finer the discretization is, the better the elongation failure can be reproduced. However, for large number of 

blocks the algorithm does not converge. For this reason, given that the theoretical solution predicted that the distance z/h>0.38, 

the upper 30% of the right buttress was not discretized together with the left buttress, where diagonal fracture is not expected. 

The size of the square blocks of the right buttress was chosen 0.1R. The dots in Fig. 10 represent the results obtained with 

DEM. Given that there is a slight deviation between the exact area of the discretized buttress that uplifts compared with the 

theoretical one, the results are still in good agreement.  

 

CONCLUSION 

 

This paper examines and compares the minimum horizontal acceleration that is needed to initiate uplift of the single-nave 

barrel vault and of the rocking frame—the two most common masonry structural systems used to bridge a span.  

 

Regarding the single-nave barrel vault, depending on the relative slenderness of the arch to the slenderness of the buttress, 

the paper identifies two lower failure mechanisms: (a) hinging of the arch alone—that is a mechanism where the buttresses 

do not participate as if the arch was supported on the ground; and (b) hinging of the arch together with a hinge at the base of 

the “downstream” buttress. In this analysis, radial ruptures are assumed for the arch; while, the buttress may rupture either 

horizontally or develop an oblique elongation failure along which the compression free portion of the buttress separates. In 

the event that the buttresses are built out of large masonry blocks and the rupture happens along a horizontal direction (entire 

buttress uplifts), the single-nave barrel vault ruptures with a seismic coefficient ε that is always smaller that the slenderness 

of the buttresses =b/h. As the embracing angle of the arch diminishes the single-nave barrel vault hinges at a higher value of 

the seismic coefficient, which however remains lower than the hinging seismic coefficient of the rocking frame which is 

ε=b/h. Accordingly, the rocking frame—that is two free-standing columns caped with a prismatic epistyle has always higher 

rupture acceleration, ε=s=b/h, than any configuration of the single-nave barrel vault with buttresses having the same 

slenderness, s=b/h. 
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