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ABSTRACT: Urban planning and big infrastructure designing demand two novel and seemingly contrasting approaches: 

1) a continuous description of subsoil nature and behavior under natural hazards, to increase the resilience of urban areas; 

and 2) a reliable characterization of subsoil hydro-mechanical properties and monitoring their working behavior. Both 

exigences can be addressed by reconstructing 3D mechanical models at a local scale by extracting from large databases 

several in-situ testings, already available for several urbanized territories worldwide. In this paper, 182 cone tip resistance 

qc, sleeve friction fs, and pore pressure u2 profiles, drawn from CPTs performed in the Bologna district (Padania Plain, 

Italy), have been used. Here, the alluvial deposits are mixtures of silt, clay, and sands, and they locally show gravel lenses 

where the ancient fans from the Apennines can be detected. Their heterogeneous hydro-mechanical characters cannot be 

described only through point investigations such as CPTs. Additionally, the variability of these mechanical profiles and the 

uncertainties due to the limited amount of data must be assessed and used in designing and hazard mapping. Thus, to draw 

a continuous 3D subsoil mechanical model based on these 182 CPTs, the Partially Heterotopic Co-Kriging technique 

(PHCK) has been applied. This approach is a multivariate technique that can be used when only some measurements are 

taken at the same locations. It allows for the estimation of the distribution of qc, fs, and u2 values in the studied domain by 

considering the spatial variability of the preceding random functions but also their spatial correlations. Differences in 

variance and spatial resolution between the measurements on the horizontal plane and along the vertical direction were 

accounted for by considering anisotropic spatial dependence models. As a result, this study has provided horizontal maps 

and vertical sections of qc, fs, and u2, as well as their 3D solid models. 
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SITE LOCATION: Geo-Database 

 

INTRODUCTION 

 

A common need for infrastructure designing and urban planning is the subsurface investigation of soil and rock formations 

to retrieve data about their litho-technical properties and substrata geometries. The ability to reconstruct 3D subsoil models 

of large portions of territory (at an urban scale or smaller) serves as a profitable tool for several engineering and urbanistic 

tasks. Furthermore, when the models get larger, it is essential to consider the variability of soil and rock properties in terms 

of spatial variability structure. Both these exigences can be addressed through the geostatistical approach applied to spatial 

numerical and categorial subsoil datasets even coming from different measurement sources (Vessia et al., 2020a). In this 

research, the case study of the Bologna province, located in Padania Alluvial Plain (Northern Italy), has been illustrated 

(Figure 1). These mixtures of silts, clays, and sands have been investigated through 182 cone penetration tests CPTus to 

generate a 3D litho-hydro-technical model of the first 30 m depth. These CPTus cover an area of 900 km2. The dataset used 

in this study has been selected from a large database implemented by the Regional Office for Territorial Protection and 

Development (http://geoportale.regione.emilia-romagna.it/it) of the Emilia-Romagna Region. Although the study area is 
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expansive, the elevation differences among the different investigated sites do not exceed the order of a few tens of meters. 

Thus, in the attached database, the elevation related to each CPTu is not reported. Instead, vertical coordinates of the 

measurements correspond to their depth. 

 

The method used to generate a reliable subsoil model based on cone tip resistance qc, sleeve resistance fs, and pore water 

pressure u2 was the Partially Heterotopic Co-Kriging technique (PHCK). This technique enables the creation of a continuous 

model of data that can be used both for planning activity if related to the territory within the urban borders, and for designing 

structures or infrastructures within the considered portion of modeled subsoil. When needed, additional investigations can be 

added not only to improve the reliability of the estimated model but also to increase the spatial resolution. To describe the 

CPTus as individual investigations, three clusters have been selected from Figure 1, each made up of four profiles of qc, u2, 

and fs. They have been characterized by means of Robertson’s soil behavior type index and individual profiles along with 

depth, as described further below.  

 

GEO-LITHOTECHNICAL SETTING 

 

Geological features 

 

The selected study area is about 900 km2 wide and is located in the southern portion of Padania Plain, which is the largest 

alluvial plain throughout the Italian territory (about 46,000 km2 wide). From a geological point of view, this is a tectonic 

depression that originated from the collision between the Southern Alps system and the Apennines system during the Plio-

Pleistocene Age. It is filled by hundreds of meter thick deposits, that are related both to continental and marine deposition 

(Pieri and Groppi, 1981; Amorosi and Farina, 1995; Regione Emilia-Romagna and ENI-AGIP, 1998; ISPRA, 2009a, 2009b). 

These deposits appear highly heterogeneous, that is which is attributable to a combination of tectonic activity and climatic 

changes during the last hundreds of thousands of years (i.e., the Pliocene-Quaternary Age). In the study area, as clearly shown 

by the lithological cross-sections in Figure 2 (modified after ISPRA, 2009a, 2009b), alluvial deposits are characterized by 

predominant undifferentiated mixtures of silts and fine sands (i.e., flooding plain deposits) with both coarser and finer 

inclusions. Near the Apennines at the south, these inclusions are mainly large gravelly-sandy alluvial fans (see cross-section 

S1), while northward they become narrower sandy paleo-channels (i.e., fluvial deposits) and silty-clayey lenses (i.e., 

lacustrine deposits). As widely known, continental deposition, especially related to rivers and lakes, creates patterns of 

lithotypes that cannot be easily predicted (Vessia et al., 2020a), either in terms of lithologies or in volume and shape. Figure 

3 shows the CPTu locations within the calculated 3D solid volume.  

 

 

Figure 1. Geo-lithological map of the study area. The CPTu locations, the lithological cross-sections’ traces (Figure 2), 
and the different clusters described below in the text (Figures 4, 5, 6, and 7) are shown. 
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Figure 2. Lithological cross-sections of the study area (modified after ISPRA 2009a, 2009b). 
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Figure 3. 182 CPT locations within the modeled volume of this study.  
 

Lithotechnical Characters 

 

At first, insights into the soil behavior type index ISBT proposed by Robertson (1990) and updated by Robertson (2009) have 

been shown. There, ISBT domains have been calculated according to the following formula and the classes listed in Table 1. 

 ISBT = [(3.47 − log(Qt))2 + (logFR + 1.22)2]0.5
  (1) 

 

where Rf is the friction ratio = fsqc ∙ 100%; Qtn is the normalized tip resistance 𝑄𝑡 = (𝑞𝑡−𝜎𝑣0𝜎′𝑣0 ) and the terms inside this 

expression are: 

 𝑞𝑡 = 𝑞𝑐 − 𝑢2 ∙ (1 − 𝑎)  (2) 

 

where the average value of a is 0.8. In addition, qc is the tip resistance, while fs is sleeve friction. 

 

Data (green and red squares) from the three CPTu clusters selected in Figure 1 can be seen. Figure 3 shows the heterogeneous 

lithological nature of these sediments, ranging from 3 to 6 (see Table 1), typical of not layered soils. The ISBT values reveal 

that a large part of the CPT measures falls into Class 4, which are sandy silts to silty sands, characterized by an increasing 

OCR and age; this may be due to the formation processes of these alluvial sediments and to the tectonic activity of the area. 

 

Table 1. CPT Soil Behavior Type (SBT) (Robertson, 1990; updated by Robertson, 2009) 

 

Soil behavior type ISBT Class 

Organic soils – clay >3.6 7 

Clays – silty clay to clay 2.95-3.6 6 

Silt mixtures – clayey silt to silty clay 2.60-2.95 5 

Sand mixtures – silty sand to sandy silt 2.05-2.60 4 

Sands – clean sand to silty sand 1.31-2.05 3 

Gravelly sand to dense sand <1.31 2 
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Figure 4. Robertson’s SBT index ISBT values (Robertson, 1990; updated by Robertson, 2009) related to data from the 

CPTus Cluster 1, 2, and 3 (see Fig. 1) (CLiq v.3.0 - https://geologismiki.gr/products/cliq). 
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Looking at the profiles of qc, fs, and u2 in Figures 5-7 from the three clusters, the heterogeneous character of the investigated 

alluvial deposits shown in Robertson’s ISBT has been confirmed. It is evident in the three sets of measurements at a short 

distance (hundreds of meters). Additionally, the individual qc, u2, and fs profiles allow some new insights. Figure 5 shows 

somewhere the absence of u2 measurements that can be replaced by the interpolated values calculated through the applied 

PHCK method. Furthermore, not all the CPTus have the same investigation depths. It frequently happens when CPTs from 

different campaigns must be used. Again, the PHCK method applied to all the 182 profiles enables us to overcome the lacking 

measures. Table 2 summarizes the elementary statistics on the three clusters of data. The means values of qc, u2, and fs seem 

to be similar, but the minima and the maximum values differ the most. The number of the measured values change for every 

cluster, and the skewness (S) and the kurtosis (K) of each cluster highlight the differences in the sample distributions among 

and within the three clusters. CPTu measures taken as samples of the whole dataset highlight how much cumbersome it would 

be to: 1) get a clear deterministic subsoil characterization from such a large dataset where the profiles that have been drilled 

hundreds of meters’ distance are not placed in a regular grid and do not show similar subsoil characters, and 2) investigate 

the soil at different depths. These aspects of the studied measurements can be straightforwardly handled through geostatistics, 

especially the PHCK technique. The latter, as all the geostatistical techniques, provides continuous estimates and the related 

uncertainty within the entire investigated domain within the considered CPTs. 

 

Table 2. Descriptive statistics of qc, u2 and fs, related to: C1) Cluster 1, C2) Cluster 2, and C3) Cluster 3, where 25th=first 

quartile; 75th=third quartile; S=skewness; and K=kurtosis. 

          C1) 

  Unit  # data Mean Min 25th Median 75th Max S K 

qc MPa 3893 2.120 0.090 1.370 1.770 2.320 35.950 8.947 103.156 

u2 MPa 2171 0.274 -0.057 0.070 0.214 0.350 1.480 1.685 3.195 

fs MPa 3893 0.092 0.001 0.056 0.081 0.112 0.521 1.898 5.542 
 

 
         

          C2) 

  Unit # data Mean Min 25th Median 75th Max S K 

qc MPa 6271 2.426 0.270 1.440 1.760 2.240 42.150 7.010 58.267 

u2 MPa 6271 0.361 -0.100 0.084 0.322 0.556 1.947 0.656 0.114 

fs MPa 6271 0.100 0.010 0.067 0.091 0.123 0.504 1.910 7.207 
 

 
         

 
 

        

C3) 

  Unit # data Mean Min 25th Median 75th Max S K 

qc MPa 3968 2.304 0.320 1.470 2.155 2.735 15.360 3.984 24.787 

u2 MPa 3968 0.301 -0.233 0.096 0.237 0.458 1.461 0.886 0.245 

fs MPa 3968 0.128 0.004 0.078 0.121 0.171 0.525 0.714 0.663 
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Figure 5. CPTu profiles (qc, u2, and fs) related to Cluster 1 in Figure 1. From left to right: 222130U505, 222130U514, 

239010E502, and 239010E503 CPTus in the attached database.  
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Figure 6. CPTu profiles (qc, u2, and fs) related to Cluster 2 in Figure 1. From left to right: 221110U504, 221110U505, 

221110U506, and 221110U509 CPTus in the attached database.  
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Figure 7. CPTu profiles (qc, u2, and fs) related to Cluster 2 in Figure 1. From left to right: 221080U510, 221080U512, 

221080U514, and 221080U519 CPTus in the attached database. 
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METHODOLOGICAL APPROACH 

 

Geostatistical Analysis 

 

To estimate the three-dimensional spatial distribution of qc, fs, and u2, while simultaneously providing quantification of the 

associated uncertainty, the Co-Kriging has been taken into account. Compared with other univariate techniques, this 

multivariate approach has the advantage of optimizing the estimation process by assuming spatial dependency among all the 

different considered variables (Castrignanò et al., 2000; Wackernagel, 2003; Webster and Oliver, 2007; Castrignanò, 2011). 

Among all the configurations of Co-Kriging, which are based on how the variables have been collected throughout the study 

area, this case is represented by the Partially Heterotopic configuration, i.e., when only some measurements are taken at the 

same locations. For this reason, we will refer throughout the text to our methodological approach by the name Partially 

Heterotopic Co-Kriging (PHCK). 

 

As for the ordinary version of Co-Kriging, PHCK requires the definition of a Linear Model of Coregionalization (LMC) to 

reproduce the spatial dependency among the considered variables, where the results of independent physical processes occur 

on different scales (Castrignanò et al., 2015; Di Curzio et al., 2019; Vessia et al., 2020b). The LMC is modeled as a linear 

combination of NS basic variogram functions, based on N(N + 1)/2 experimental direct variograms and cross-variograms. 

In matrix notation, the LMC equation can be written as follows: 

 𝚪(𝐡) = ∑ 𝐁uNS
u=1 gu(𝐡) 

(3) 

where 𝚪(𝐡) is an 𝐧 x 𝐧 matrix of direct variograms (diagonal elements) and cross-variograms (non-diagonal elements), while 𝐁u is a symmetric matrix of coefficients biju, that represent the spatial structures gu(𝐡) related to each spatial scale u. 

 

Direct variograms γ(𝐡) is a spatial dependency function related to a given random function Z, that measures the variance of 

differences related to a separation vector called lag (𝐡). Eq. (4) represents it below: 

 γ(𝐡) =  12N(𝐡) ∑[z(𝐱i) − z(𝐱i + 𝐡)]2N(𝐡)
i=1  (4) 

where 𝐱i is the sampling location, while i = 1, … , N(𝐡) indicates the set of N(𝐡) pairs of sampling locations separated by a 

specific value of 𝐡. 

 

On the other hand, cross-variograms (γzi,zj(𝐡)) measure the joined variability of two variablezi(𝐱α)s and zj(𝐱α), and are 

defined by the following Eq. (5): 

 γzi,zj(𝐡) =  12N(𝐡) ∑{[zi(𝐱α) − zi(𝐱α + 𝐡)][zj(𝐱α) − zj(𝐱α + 𝐡)]}N(𝐡)
α=1  (5) 

where xα is the location of the sampling point, and α = 1, … , N(𝐡) indicates the set of N(𝐡) pairs of sampling locations 

separated by a specific value of 𝐡, as already defined for direct variograms. 

 

The estimation of each of the variables (i.e., qc, fs, and u2) within the considered domain has been performed through the 

following Eq. (6): 

 zi0∗ (𝐱0) = ∑ ∑ λαini
α=1

n
i=1 zi(𝐱α) (6) 

where zi0∗ (𝐱0) is the target variable,  i is the index of the variable, and  it the location index. The estimation uncertainty can 

be quantified as well by the PHCK estimation variance (σ2(𝐱0)), that is calculated by Eq. (7): 
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σ2(𝐱0) = 2 ∑ ∑ λαini
α=1

n
i=1 γii0(𝐱α, 𝐱0) ∑ ∑ ∑ ∑ λαi

nj
β=1

ni
α=1

n
j=1

n
i=1 λβj γij(𝐱α, 𝐱β) – γi0i0(𝐱0, 𝐱0) (7) 

The LMC described by Eq. (3) enables calculating the weights  in Eq. (6) and (7) through the Kriging equation system. 

Since PHCK is a stationary multivariate technique, Eq. (7) is considered meaningful only when the measured datasets have 

a Gaussian distribution. As a matter of fact, qc, fs, and u2 variables are characterized by definitely non-Gaussian distributions, 

as is pointed out in Table 1(C3). To make the estimated variance values quantitative effective measures of uncertainty, all the 

considered variables have been transformed into Gaussian variables Y through the function named Gaussian Anamorphosis. 

This function is also able to convert a Gaussian variable Y into a new non-Gaussian distributed variable Z = Φ(Y), through 

a polynomial expansion fitting (Chilès and Delfiner, 2009): 

 Φ(Y) = ∑ ΨiHi(Y) (8) 

 

where Hi(Y) are the Hermite polynomials, while Ψi represents the corresponding coefficients. 

 

Starting from this function, a non-Gaussian variable is transformed into a Gaussian one by inverting the Gaussian 

Anamorphosis: 

 Y = Φ−1(Z) (9) 

 

The qc, fs and u2 estimations have been performed by the ISATIS software (https://www.geovariances.com/en/software-

geovariances; Geovariances, 2017). 

 

Additionally, the best LMC has been selected through the Cross Validation procedure (Vessia et al. 2020a). It consists of 

calculating statistics from the output dataset values such as: the Mean Error (ME) and Root Mean Squared Error (RMSE), 

defined by Cressie (2015) as follows: 

 𝑀𝐸 = 1𝑁 ∑(𝑧(𝑥𝑖) − 𝑧 ∗ (𝑥𝑖))𝑁
𝑖=1  

 

(10) 

𝑅𝑀𝑆𝐸 = √1𝑁 ∑(𝑧(𝑥𝑖) − 𝑧 ∗ (𝑥𝑖))2𝑁
𝑖=1  (11) 

 

where N = number of data points, z(xi)= sample data, and z*(xi) is the estimate at the sample point xi from the N-1 remaining 

sample data.  

 

These variables measure the estimation bias and the precision, respectively. The optimal values of these statistics should be 

close to zero. Furthermore, the number of outliers is usually helpful to evaluate the estimation reliability. 

 

Model Uncertainty Quantification 

 

To make the uncertainty calculated by Eq. (7) easily exploitable, the specific indexes proposed by Vessia et al. (2020a) have 

been used to build 3D error models: the Underestimation Error (UE%) and the Overestimation Error (OE%) percentages: 

 UE% =  |z(x) − LL|z(x) % 

 

(12) 

https://www.geovariances.com/en/software-geovariances
https://www.geovariances.com/en/software-geovariances
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OE% =  |z(x) − UL|z(x) % (13) 

 

where LL and UL are the lower (LL) and upper (UL) limits of the 95% confidence interval of the Gaussian transformed 

estimates, for each one of the selected variables. 

 

QUANTITATIVE 3D MECHANICAL SUBSOIL MODELS 

 

Based on the spatial variability structures drawn from the sampling semivariograms fitted by means of nested spherical 

semivariogram models, the horizontal and vertical variability structure of the data qc, fs and u2 have been calculated, as shown 

in Figure 8.  

 

The variograms and cross-variograms of the LMC (Figure 8) have been built based on the entire dataset, meaning that all 182 

CPTus measurements have contributed. The dataset has been considered as a whole, so its spatial variability structures were 

modeled through an anisotropic LMC: one isotropic structure on the horizontal plane and one vertical structure. Each of these 

structures is not simple but nested; i.e., more than one basic spatial variability structure is used to fit the data. Every basic 

structure is characterized by a range and a partial sill, which can be considered to thoroughly describe complex spatial patterns 

typical of such soil mixtures. Provided that the PHCK is a stationary method, Gaussian distributed datasets are needed. Thus, 

the raw measurements have been properly transformed into standardized values through the Gaussian Anamorphosis function, 

referred to by a prefix “g”. At the end of the calculation process, the standardized estimated variables have been back-

transformed, changing the prefix “g” into “k”. 
 

Calculated variograms and cross-variograms reveal that the most correlated measured parameters are qc and fs, while u2 seems 

to not significantly affect the variability structures of the other two. This is true for both anisotropic variability structures. 

The vertical semivariograms of qc and u2 show a non-stationary trend that has been modeled by the k-Bessel semivariogram 

structure. The k-Bessel function models those spatial variability structures that show long-range stationarity.  

Such variability structures have been used to interpolate the data into continuous 3D qc, fs, and u2 models by means of the 

PHCK. 

 

Different 3D models of continuous data for each variable have been calculated: the estimated value, the underestimation 

error, and the overestimation error. The qc excavated solid model was shown in Figure 9, whereas in Figures 10 and 11 present 

the lower and upper error values. From the 3D model of the estimated values, bodies of higher tip resistance that are paleo-

channel areas can be seen. These bodies are quite extended but not layered. Thus, it could be difficult to recognize these 

inclusions without using a continuous model. Errors, as Figures 10 and 11 illustrate, happen at a rate of about 30-40%, 

although they increase at the edges of the domain due to the lack of data or wherever the gravel bodies are detected. The 

influence of the gravel bodies on the errors of fs is less evident because it is a smoothed variable (Figures 12, 13, and 14). 

Additionally, the Co-Kriging operator is well known to smooth the sharp spatial variations in the estimation process. 

 

To assess the LMC performance, the ME and RMSE values have been calculated through cross-validation, as listed in Table 

3. The selected LMC clearly appears to be unbiased and precise because both the ME and RMSE values are almost zero. 

 

Table 3. ME and RSME values from cross-validation related to the Gaussian transformed qc and fs variables. 

 

Variable ME RMSE 

gfs 0.000370 0.1789 

gqc 0.000001 0.1676 

 

In detail, Figure 16 illustrates the 3D qc model of a portion of the Imola municipality at different depths under the surface 

level (i.e., at 5, 10, 15, and 20 m). From this model, the local increases of the tip resistance value are shown and can be 

followed along with depth, as well as at a fixed depth throughout the considered area. It is worth emphasizing the ability of 

this data model to deal with the multiscale heterogeneity of the subsoil; if further CPTs will be locally added to the model, 

not only will this increase our knowledge of the mechanical properties of the soils but also the quality of the estimates. In 

other words, the calculated uncertainty could be reduced even to estimates far from the location of the new investigation. The 

PHCK technique uses all the measures of the dataset to calculate both estimates and uncertainties; however, the farther they 

are, the less their influence in the calculation at each model point. 
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Figure 8. Linear Model of Coregionalization related to the Gaussian transformed fs, qc, and u2 variables. The green dots 

are the experimental values, while the blue and red lines are the model lines of direct variograms and cross-variograms 

(the red lines relate to the horizontal model, while the blue lines relate to the vertical model). 
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Figure 9. 3D excavated solid model of qc estimated values. 

 

 

Figure 10. 3D excavated solid model of qc underestimated error.  
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Figure 11. 3D excavated solid model of qc overestimated error. 

 

 

Figure 12. 3D excavated solid model of fs overestimated error.  
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Figure 13. 3D excavated solid model of fs underestimated error. 

 

 

Figure 14. 3D excavated solid model of fs overestimated error.  
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Figure 15. 3D model of qc of a portion of the Imola municipality, sliced at different depths. Its location is shown in Figure 

1. 

 

CONCLUSIONS 

 

The geostatistical tools can be very useful in reconstructing 3D continuous data models of mechanical measured parameters, 

such as those from CPTus. The Partially Heterotopic Co-Kriging technique proved to be a powerful method to interpolate 

individual investigations even at a large distance and to generate continuous data volume of the subsoil wherever numerous 

profiles can be handled as georeferenced data. This type of data management can be timesaving and promises to reduce the 

financial demands in planning and designing activities because it advantageously enables, among other things, the recognition 

of those areas where supplementary investigations are required as well as where increases or decreases in soil resistances are 

expected. Some work is still needed to integrate the resultant solid data models within BIM (Building Information Modeling) 

and GIS (Geographic Information System) environments.  
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