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ABSTRACT: When an earth dam is constructed, the mechanical behavior must be monitored in order to realize and confirm
the safe construction of the dam. In addition, a numerical analysis is commonly conducted before and during the construction
to predict the future behavior of the structure. Often, however, not all the material parameters needed for the numerical
analysis are available; parameter identification has therefore been an important problem in numerical simulations performed
to predict future behavior. This case study targets a rock-fill dam in the Kyushu area of Japan, and its objectives are to
enhance the prediction of dam deformation and to demonstrate the identification of the unknown constitutive parameters
needed for the actual dam construction process. The particle filter, incorporated into the soil/water coupled FEM, is used
for the parameter identification. The identification results show that the numerical results obtained from the identified
parameters agree considerably well with the observation data and that 10,000 particles are sufficient for making an accurate
prediction.
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INTRODUCTION

Dams are typically huge structures constructed with soil materials. During the construction of a soil structure, the mechanical
behavior, such as deformation and water pressure, must be monitored in order to achieve and confirm its safe construction.
Moreover, it is typical to carry out a numerical analysis before and during the construction to predict the future behavior of
the structure. Thus far, several case studies have attempted to numerically simulate the mechanical behavior of such structures
by FEM and DEM (e.g., Broojerdi et al., 2018; Aydemir et al., 2017; Kanungo et al., 2013; Kong et al., 2002).

Determining the material parameters, such as the hydraulic conductivity, elastic modulus, and yield stress, is indispensable
for predicting the deformation or for performing a risk analysis of soil structures. However, often not all the material
parameters needed for the numerical analysis can be obtained. This has been a common problem in numerical simulations
performed to predict the future behavior of structures. Although laboratory testing can provide the physical and mechanical
properties of soil materials which are the most acceptable for numerical analyses, there are usually several material parameters
which are difficult to determine because of the limitations of time, money, and/or experimental techniques, or which suffer
from inaccuracy due to differences between the conditions in the laboratory and at the construction site. Hence, the
identification of the material parameters has been an important problem in the field of geotechnical engineering as well as
dam engineering. For example, there is a study by Schaap et al. (2001) in which a computer program called Rosetta was
developed to determine soil hydraulic parameters. Recently, there have also been studies whose purpose was to identify
material parameters for constructed dams and the ground (e.g., Huang et al., 2012; Toromanovic et al., 2020; Bhutto et al.,
2019). As suggested by Kool et al. (1987), field-scale parameter estimations have been necessary, and there is still sufficient
room for improvement in parameter identification for practical application.

Data assimilation is a broad research subject which adjusts numerical models in accordance with observations or
measurements. The development of data assimilation has been achieved mainly in the field of geoscience, such as

Submitted: 23 January 2021; Published: 10 December 2021

Reference: Tanenaga E., Fujisawa K., and Murakami A. (2021). Identification of Material Parameters by Particle Filter
Using Observation Data Obtained during Construction of Rock-Fill Dam. International Journal of Geoengineering
Case Histories, Volume 7, Issue 1, pp. 76-94, doi: 10.4417/1JGCH-07-01-04

ISSMGE International Journal of Geoengineering Case Histories ©, Vol. 7, Issue 1, p.76


mailto:tanenaga@kajima.com
mailto:fujisawa.kazunori.2s@kyoto-u.ac.jp
mailto:fujisawa.kazunori.2s@kyoto-u.ac.jp
mailto:murakami.akira.5u@kyoto-u.ac.jp

D
a0

oceanography and meteorology, and nowadays it is being applied to various problems in the fields of engineering, medical
science, and anthropology (e.g., Nakano et al., 2019; Motesharrei et al., 2016). There are several typical methods for data
assimilation, such as the Kalman Filter (KF) for linear problems, and the ensemble Kalman Filter (EnKF; Evensen, 1994;
Evensen, 2006) and the Particle Filter (PF; Gordon, 1993; Kitagawa, 1996) for nonlinear problems. These methods enable
parameters included in the numerical models to be identified with the aid of observation data. In geotechnical engineering,
several previous studies have been done on parameter identification by the methods of data assimilation; for example, Bailey
et al. (2010) employed EnKF for estimating the hydraulic conductivity, and Shuku et al. (2012), Murakami et al. (2013), and
Nguyen et al. (2015) applied the PF for identifying the parameters of constitutive models.

The objectives of this case study are to enhance the prediction of the deformation of dams in order to achieve their safe
construction and to demonstrate the identification of the unknown constitutive parameters needed for the actual construction
process. The PF is used for the parameter identification. The next section explains the PF, the constitutive model used for this
study, and the numerical analysis of the dam deformation. Then, the results of the parameter identification are presented,
followed by the conclusions of this paper.

METHODOLOGY
Particle Filter (PF)

The PF is regarded as the nonlinear Kalman filter; it is used as one of the methods for data assimilation. Since the detailed
derivation of the PF can be found in Murakami et al. (2013) and Takamatsu et al. (2020), only a brief description of the
method via the SIS (Sequential Importance Sampling) algorithm is shown in this section. Generally, data assimilation
techniques including the PF need a state space model, which describes the prediction and observation of state variables. The
following state space model is capable of describing the mechanical behavior of soil structures, such as dams, with nonlinear
stress-strain relationships:

x; = fr(x-q) + v, (1a)
ye = h(x) + & (1b)

where x¢, ¥¢, V¢, €, f+, and h; denote the vectors of the state variables, observation data, system noise, observation noise,
prediction function, and observation function, respectively. Subscript 7 or -1 means the time steps in Eq. (1). Function f,
corresponds to the so-called soil-water coupled analysis used to predict the deformation of soil structures. It should be noted
that the state vector can include material parameters as well as the variables which are solved in the numerical analysis, such
as displacement and pore water pressure. The system and observation noises are commonly assumed to follow the normal
distribution.

v.~N(0,Q;) (2a)
&~N(O,R,) (2b)
The basic purpose of the PF is to obtain the following conditional probabilistic density function p(x.|y;.;), called the

posterior distribution, when the nonlinear state space model is employed. Bayes’ theorem develops posterior distribution
p(x¢|y1.t) into the following form:

PYelxe, Y1.e-1) P(Xe|Y1:6-1)
PYelyie-1)

p(x¢|yie) = (3)

In the numerator of Eq. (3), p(x¢|¥1.c—1) and p(¥;|x;, ¥1.c—1) are determined by the prediction equation, Eq. (1a), and the
observation equation, Eq. (1b), respectively. The denominator has the normalization constants, which can be obtained by:

P(YVelY1e-1) = fp(ytlxtryl:t—l) p(x¢|Y1:e-1) dx; 4
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At time step -1, probabilistic density distribution p(X;_q|¥1.c~1) is given The PF aproximates it in the following form with

@)
t-1]t-1

Each sample of x is called a “particle”.

t1|t1

N
} composed by N samples of x t 1|t 1

the aid of the ensemble {x

p(Xe—1|Y1:6-1) ~ZWt( 10(xe g — g 1|t—1) ©)

where 6 is Dirac’s delta function and wt 1 is the weight of the ith particle. Given the ensemble approximation of
p(x:_1|¥1:6-1)> P(X¢|Y1:4—1) can be transformed as follows:

p(xe|y1e-1) = fp(xtlxt—llyl't—l) (X1 |Y1:6-1) dx;

fp(xtlxt 1) ZWt 10(xeq — t 1|t 1) dx;
= Z f Wt(l)lé‘(xt_1 - xgi_)1|t_1)p(xt|xt—1) dxt (6)
i;l
@
= Z Wi )1p (xt|x§l)1|t—1)
i=1
N
= Z We_ 15(xt - xﬁ)t—l)
i=1

where

x® @ @
Xtjt-1 = f(t1|t Dt (7N

P(Y¢lxs, ¥1..-1) is called the likelihood and can be directly obtained from Egs. (1b) and (2b).

_ (J’t - ht(xt))TRt_l(yt - ht(xt))

1
o) = =— 8
pelxe, Yie-1) = p(Velxe) ZO™ R exp 2 ®)
Substituting Eqgs. (6) and (8) into Eq. (4), the denominator of Eq. (3) is reduced to the following form:
PYelYie-1) = Z Wt(l)1p }’t|x$_1) ®)
Substituting Egs. (6), (8), and (9) into Eq. (3), the posterior probabilistic density function p(x;|y;.;) becomes:
N
p(xelyie) = Z Wt(l) 6(x; — ﬁi) (10)
Where
@) @
w_ P (ytlxm_l) We-1 @ _ 0 11
) B ) 0 Fe T X (D)
j=1WeP (ytlxdt—l)

The second equation in Eq. (11) is available only when the SIS algorithm is employed. In the SIS algorithm, the weight W(l)
of each particle is updated without resampling, as seen in Eq. (11).
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The algorithm of the PF, shown in Egs. (3)-(11), is simply summarized as seen below.

AN N
1. Prepare the initial set of particles {x(()ll)o} =[x(()1|()), -, x(()1|vo) ] with the initial weight of {wg)} =[wgl), - WBN)].
i=1 i=1

2. When =1, ..., T, calculate xﬁ)t_l (i=1,...,N) as

x%ﬂ = ft(xgl—)1|t—1) + vt(cl) (12)
3. Update xl(ti—)1|t—1 and wgi_)l (=1, ..., N) according to Eq. (11), as follows:
@) @)
o __ Pl wh M _ O
W, = -
N €))]

5 ’ xt|t - xt|t—1
]':IWt—lp ytlxt|t_1

4. Return to the second step with r=t+1.
Constitutive Model for Elasto-plastic Deformation Analysis

A soil/water coupled elasto-(visco-)plastic finite element analysis, based on DACSAR (lizuka and Ohta, 1987), is conducted
to predict the deformation of a rock-fill dam. The constitutive model originally installed in DACSAR is the so-called
Sekiguchi / Ohta model (Sekiguchi and Ohta, 1997). The constitutive model can deal with the mechanical behavior of time
dependency, such as secondary consolidation, creep, and stress relaxation, as well as the plastic strain occurring along with
anisotropy. The rotation of principal stress can also be considered. Flow surface F is defined as:

F=aln {1 +@exp <@>} -7 =0 (13)
a a

which includes yield function f(a") and describes the time-dependent visco-plastic behavior. In Eq. (13), @ is the coefficient
of secondary consolidation, v, is the initial volumetric strain rate, f(6") is a scalar function corresponding to the yield
function, ¢’ is the effective stress tensor, and &,° is the visco-plastic volumetric strain. Yield function f(a") of the Sekiguchi
/ Ohta model is defined as follows:

!

(o) = MDln;)—, + D’ (14)
0
where
* 3 ' i ’ ’ 1 1 ’ 1
n =\E”71_770”»71=i,5=0'_PI’UO=S_O,S=UO_P01’P=‘0':1,Po=‘0'o:1 (15)
p! p’o 3 3

M is the critical stress ratio, D is the coefficient of dilatancy, p’ is the mean effective stress, p'y is the mean effective stress
in pre-consolidation, * is the stress ratio parameter, @, is the effective stress tensor in pre-consolidation, and 1 is the identity
tensor.

In previous studies, such as Sun et al. (2004), Zhang and Ai (2012), and Salma et al. (2018), the above Sekiguchi / Ohta
model was used for computing the elasto-plastic deformation. However, the yield surface has a singular point under the K|,
consolidation condition (See Figure 1). Then, the plastic strain rate cannot be calculated precisely by the associated flow rule
because the yield function is not differentiable (Murakami, 2012). In order to avoid this problem, another yield function based
on the modified Cam-Clay model is employed, as given below:

) p/ Mz +n*2
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K, Line

------- :Original Sekiguchi / Ohta model
—— :Modified Cam-clay-based Sekiguchi / Ohta model

Figure 1. Yield surface based on modified Cam-C.lay model.
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Figure 2. Finite element mesh of foundation and dam body (Unit: m).
Numerical Simulation of Dam during Construction

The rock-fill dam targeted in this paper is located in the Kyushu Region of Japan. The dam body has already been constructed
and is going through the initial impoundment. The deformation of the dam was monitored during its construction and the
mechanical behavior was numerically simulated for its safe construction, even though some material parameters were not
available a priori. This section presents the numerical results, which were achieved through the accurate prediction of the
dam deformation and the estimation of the unknown material parameters by means of the PF. Figure 2 shows the finite
element mesh of the dam after its embankment had been completely constructed. The finite element mesh has 7,120 elements
and 7,208 nodes. The soil/water coupled analysis explained in the previous section is applied to this problem, in which the
displacement and the pore water pressure of the dam body are the variables to be solved.

Table 1 lists the material parameters of the core zones. Compression index A and swelling index k were obtained from the
slope of the e-logp’ curve in the natural logarithm. The indices calculated in the base-10 logarithm are written as C. and C;,
respectively, and the equalities of 1 = 0.434C, and k¥ = 0.434C; hold true for these indices. There are two types of core
zones, the 1st core zone and the 2nd core zone, as shown in the table. The soil materials used for the 1st and 2nd core zones
of the dam construction correspond to the zones located below and above EL. 247.00 m, respectively.
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Table 1. Material constants of core zones.

Property Unit Ist Core Zone  2nd Core Zone
Wet density p;, t/m? 2.241 2.256
Void ratio at yield e, - 0.437 0.496
Angle of shear resistance ¢’ deg 339 34.6
Critical stress ratio M - 1.37 1.40
Compression index A - 0.04166 0.03863
Swelling index k - 0.00781 0.00651
Vertical yield stress ', kPa 300.0 300.0
Poisson’s ratio v - 0.307 0.302
Coefficient of earth pressure at rest K, - 0.442 0.432
Hydraulic conductivity k cm/s 6.6 x 1077 1.4 x107¢
- 0.0319 0.0347

Change ratio of hydraulic conductivity §;

EL. 340.00 m
EL. 320.00 m

EL. 300.00 m
EL. 280.00 m

EL. 255.00 m
EL. 230.00 m

- :Core zone |:| :Filter zone |:| :Rock zone (Inner rock) |:| :Lip wrap (Outer rock)

@ :Vertical displacement M :Eore water pressure % :Earth pressure

[ :Pore water pressure and earth pressure O :Vertical displacement, pore water pressure and earth pressure
Figure 3. Cross section of dam and the location of displacement and pressure gauges.

The soil properties shown in Table 1 were obtained from laboratory testing conducted at the construction site. The density p;
was determined by the standard compaction test for the purpose of controlling the compaction work. The friction angle ¢’
and the hydraulic coefficient k& were obtained from the consolidated-undrained triaxial test and the permeability test,
respectively. The critical stress ratio M, the coefficient of earth pressure at rest Ko, and the Poisson’s ratio v were evaluated
from the friction angle with the aid of the following relationships: M=6sing’/(3- ¢"), Ko=1- sing’, and v= Ko /(1+ Ko). The
compression index C. and the swelling index C; as well as e, 0”,0, and & were obtained from the consolidation test.

Table 2 lists the material parameters of the filter and the rock zones similarly to Table 1. The rock zone is divided into two
zones of inner rock and outer rock. The outer rock was utilized for the lip wrap zone covering the inner rock zone (see Figure
3). Comparing Table 1 for the core zones with Table 2 for the filter and rock zones, it is clear that the compression index (4
or C.), swelling index (« or C;), and vertical yield stress ', are not listed in Table 2. This is because these material constants
of the filter and rock zones were unknown and needed to be identified. Although the values of the material constants for these
two rock zones are slightly different between the inner and outer zones, the materials for both zones were brought from the
same location. Hence, the three parameters are also assumed to be the same for both zones.
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In the two-dimensional soil/water coupled analysis used to compute the deformation of the dam, the vertical displacement at
the bottom and the horizontal displacement at the side of the foundation were fixed, and the stress-free condition was imposed
on the surfaces of the foundation and the embankment. The finite elements of each embankment layer were piled up in
accordance with the construction history in order to compute the consolidation process of the constructed embankment layers
(See Figure 4). The pore water pressure was computed only in the core and filter zones; the atmospheric pressure was given
to the other zones. The foundation was assumed to be linear elastic with the elastic modulus of 1,400 MPa and Poisson's ratio
of 0.3.

The vertical displacement (settlement), pore water pressure, and earth pressure were acquired by settlement gages, pressure
transducers, and earth pressure gauges once a day for 456 days after the start of the dam construction. The positions of the
observation points are shown in Figure 3. Figure 4 presents the cross-sectional mesh of the dam under construction up to the
456th day. It should be noted that the dam had not been completely constructed by the time this study was started. Hence, all
the observation points for the settlement, pore water pressure, and earth pressure are located under EL. 280.00 m. In total,
there are 19 points for displacement, 22 points for pore water pressure, and 19 points for earth pressure. Moreover, the day
on which the data acquisition was begun differs depending on the positions of the observation points, which means that the
amount of observation data also differs depending on their positions.

Table 2. Material constants of filter and rock zones.

Property Unit Filter Inner Rock  Outer Rock
Wet density p, tm’ 2.364 2263 2.286
Void ratio at yield e, - 0.193 0.203 0.203
Angle of shear resistance ¢’ deg 39.4 43.3 43.3
Critical stress ratio M - 1.610 1.780 1.780
Poisson’s ratio v - 0.412 0.412 0.412
Coefficient of earth pressure at rest K, - 0.700 0.700 0.700
Hydraulic conductivity k cm/s 3.7x107% 26x107" 53x107!
Change ratio of hydraulic conductivity &, - 0.0061 0.0373 0.0373

(a) Initial (b) After 192 days

400 400

300

200

100

0 L 0 [
-600 -400 2200 0 200 400 600 -600 -400 200 0 200 400 600
(c) After 354 days (d) After 456 days
400 400
300 £ g 300
200 200
100 100
0 : 0 :
-600 -400 2200 0 200 400 600 -600 -400 200 0 200 400 600

Figure 4. Cross sections of dam during construction (Unit: m).
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Procedure for Parameter Identification by Particle Filter

The procedure for identifying material parameters C., C;, and o', for the filter and rock zones is summarized into the
following steps. (The number of parameters to be identified is six.)

Step 1 (Initialization): Enough sets of six uniform random numbers are generated for making the sets of six parameters in the
ranges shown in Table 3. (Each set of six parameters corresponds to a particle.) These ranges were determined according to
the empirical data which had been used for the construction of the dam. This step corresponds to the preparation of the initial
~ N
set of particles {xgl)o} . It should be noted that state variable x is the vector having the components of the displacements
i=1
and the pore water pressure at all the nodal points and the six parameters to be identified. The initial weight wf)l) of every
particle can be assumed to be 1/N because uniform random numbers have been given to the six parameters.

Table 3. Ranges in parameters to be identified.

Parameter C. C o' vo
Filter zone 0.030-0.070 0.005-0.015 300.0-700.0
Rock zone 0.043-0.100 0.013-0.032 400.0-800.0

Step 2 (Prediction): Given each set of parameters, the deformation analysis of the dam is conducted, and the vertical
(t)}”

displacement and pore water pressure are solved, which results in {xm

at =1, ..., T by recursive use of the following
i=1

equations in Egs. (11) and (12):

o _ ® ® o _ ,0
Xejemr = FZ0em0) TV 5 X = X
In this step, function f; corresponds to the operation of the soil-water coupled analysis with a set of the parameters given by
each particle. For simplicity, system noise v, was assumed to be zero in order to avoid the determination of the system noise
(e.g., Murakami et al., 2013; Takamatsu et al., 2020). However, it should be noted that the uncertainty involved with the state
equation is included in the observation noise because the observation noise implies the gap between the prediction by the
state equation and the observation.

N
Step 3 (Filtering): The weights of the particles {w?)} can be updated at =1, ..., T by recursive use of the following
i=1

equations derived from Eqs. (8) and (11):

T
' : ® - ®
w® — P (ytlxﬁz—l) Wios p (y |x® ) _ 1 exp (yt —h (xt?t—l)) Re’ (yt ~h (xt?t—l))
t ' j ’ tltee-1) =
owp (velxl),) @R, 2

Here, h; corresponds to the operation which outputs the vertical displacement, pore water pressure, and earth pressure at the
observation points from a particle xﬁg_l (=x$). In this step, the ensemble approximation of the posterior distribution,
®

(xely1e) = ?’:1 Wt(l) 8(x, — Xile

), can be obtained at every time step.

Step 4 (Identification): Considering that the state variable vector includes the parameters to be identified, the parameters are
identified by averaging the state variable at the final time step (#=T7), as follows:

N N
Xr = fpr(leylzT) dxr = fxT Z W;l) 6(xr — x(Tll)T)de = Z Wpx(TLI)T a7
i=1 =1

where X7 denotes the mean of x7.
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In the above procedures, the prediction step (Step 2) and the filtering step (Step 3) can be completely separated, which is a
great advantage of the PF via SIS (Sequential Importance Sampling). Hence, the above procedure is feasible without changing
the available computer programs for the numerical simulation at the prediction step. The variance/covariance matrix R;,
which is necessary for Step 3, was determined as follows (Shuku et al., 2012):

(a151)2 0 0
0 (0(252)2 0 :
R, = : 0 ~ 0 : (18)
: : 0o - 0
0 0 e (aohssobs)z

where Si, S2, ... or Sops denotes the maximum value of the measured data at each observation point, and a1, @, ... OF Qs
denotes the factor for the maximum value. In the following section, the value of 1.7 is given equally to ai, @, ... and Qs in
order to avoid serious degeneracy (small variance or covariance of the observation noise easily induce severe degeneracy).
The accuracy of the numerical simulation is investigated in terms of the RMSE (Root Mean Square Error) (Chai and Draxler,
2014) between the measured data and the numerical results obtained with the identified parameters.

Table 4. Parameters identified with different numbers of particles.

Filter Zone Rock Zone
Number of Particles C. C. o C. C. o
2,000 0.0522 0.0102 428.1 0.0542 0.0151 750.4
3,000 0.0522 0.0102 428.1 0.0542 0.0151 750.4
4,000 0.0522 0.0102 428.1 0.0542 0.0151 750.4
5,000 0.0516 0.0103 428.7 0.0540 0.0150 746.7
6,000 0.0515 0.0103 432.8 0.0542 0.0149 746.0
7,000 0.0515 0.0104 436.1 0.0539 0.0148 745.4
8,000 0.0514 0.0103 437.5 0.0539 0.0147 744.2
9,000 0.0512 0.0100 434.9 0.0533 0.0146 741.9
10,000 0.0512 0.0101 436.6 0.0534 0.0146 741.4
11,000 0.0510 0.0100 434.7 0.0536 0.0145 741.0
12,000 0.0510 0.0100 436.9 0.0536 0.0145 741.2
13,000 0.0506 0.0101 434.2 0.0536 0.0144 740.1
14,000 0.0505 0.0101 434.6 0.0536 0.0144 739.0
15,000 0.0504 0.0100 434.2 0.0537 0.0143 738.6

RESULTS AND DISCUSSION

15,000 particles were generated for the identification of the six material parameters by the PF incorporated into the soil/water
coupled analysis. Generally, the number of particles directly affects the accuracy of the identification. The more particles
prepared, the better the parameter identification or the better prediction that can be achieved. Table 4 lists the values of the
identified parameters along with the different numbers of particles. The recomputed displacement, pore water pressure, and
earth pressure are shown in the following figures, i.e., Figures 5 to 20, using the parameters identified with 15,000 particles.
In these figures, the solid lines indicate the measured data, while the broken lines indicate the numerical results. It can be
seen from these figures that the numerical results reproduce the observed data surprising well. In particular, the numerical
results for the displacement, pore water pressure, and earth pressure in the core zones agree fairly well with the measured
data. The measured pore water pressure in the filter zone suddenly increased in July of 2018; however, the computation
cannot follow this behavior. This numerical analysis adds embankment layers and computes the consolidation. Hence, the
aforementioned sudden increase in pore water pressure is not predictable.

ISSMGE International Journal of Geoengineering Case Histories ©, Vol. 7, Issue 1, p.84



100

90

VAI-1
80 /N |
— 70 VAI1-2
§ VAI-2
= 60 )
8 VAI-3
g 50
§ eeccese VAL-3
2 40 VAL-4
A 30 ceceeee VAL-4
20 VAI-5
10 cescess VAL-S
VAI-6
0l
2017/9/22 2017/12/31 2018/4/10 2018/7/19 2018/10/27 2019/2/4  2019/5/15 VAI-6
Date
Figure 5. Time histories of displacement (core zone).
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Figure 6. Time histories of displacement (filter zone).
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Figure 7. Time histories of displacement (downstream rock zone).
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Figure 8. Time histories of displacement (upstream rock zone).
400
350
= 300
]
2 250 PA-06
=
% ssesecees PA_O6
2 200
o PA-12
&
g 150 Y - )
2 PA-18
£ 100
eesscss PA-18
50
0 Aol e s ]
2017/9/22  2017/12/31 2018/4/10 2018/7/19 2018/10/27 2019/2/4  2019/5/15
Date
Figure 9. Time histories of pore water pressure (upstream filter zone).
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Figure 10. Time histories of pore water pressure (upstream core zone).
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Figure 11. Time histories of pore water pressure (center core zone).
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Figure 12. Time histories of pore water pressure (downstream core zone).
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Figure 13. Time histories of pore water pressure (downstream filter zone).

ISSMGE International Journal of Geoengineering Case Histories ©, Vol. 7, Issue 1, p.87



900

800
700
=
g o0
% 500
£ 400 EA-12C
= ceeeees BAC12C -==-OEA-12C
5 300
[Sa]
200
100
0 %
2017/9/22 2017/12/31 2018/4/10 2018/7/19 2018/10/27 2019/2/4 2019/5/15
Date
Figure 14. Time histories of earth pressure (upstream rock zone).
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Figure 15. Time histories of earth pressure (upstream filter zone).
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Figure 16. Time histories of earth pressure (upstream core zone).
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Figure 17. Time histories of earth pressure (center core zone).
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Figure 18. Time histories of earth pressure (downstream core zone).
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Figure 19. Time histories of earth pressure (downstream filter zone).
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Figure 20. Time histories of earth pressure (downstream rock zone).

As seen in Table 4, the values of the identified parameters moderately change as the number of particles increases. The RMSE
(Root Mean Square Error) is defined as:

RMSE = 19)

and plays an important role in the assessment of the accuracy of the numerical results shown in Figures 5-20. In Eq. (19), e;
and L denote the error between the observed and the computed values at the time step having the observation data, and the
number of errors which is the same as the amount of observation data of interest, respectively. Figure 21 shows the
relationship between the number of particles and the RMSEs of the vertical displacement, pore water pressure, and earth
pressure separately. It can be seen that all of the RMSEs almost constantly decrease as the number of particles increases. In
addtion to the RMSEs for each type of observation data, such as vertical displacement and pore water pressure, the following
NRMSE (Normalized Root Mean Square Error) is defined as:

(20)

and considered to evaluate the total error between the numerical results and all the observation data. ¢;S; in Eq. (20) is the
standard deviation comprising the variance/covariance matrix R; in Eq. (18), and the value of ;S;should be selected from
aiS1, oS, ... and dopsSoss, depending on the observation point associated with error e;. Figure 22 shows the NRMSEs
calculated with all the observation data on the vertical displacement, pore water pressure, and earth pressure.

The algorithm of the PF works better for minimizing the NRMSEs between the computation and the observation as the
number of particles increases because the accuracy of the posterior probabilistic distribution is enhanced. Hence, Figure 22
shows that the total NRMSEs decrease constantly as the number of particles increases, and that the PF carried out the
identification of the parameters properly. In the figure, the total NRMSEs do not change significantly when the number of
particles is in the range of 2,000 to 4,000, and the total NRMSEs start to decrease significantly after the number of particles
exceeds 5,000. A moderate decrease in the total NRMSESs can be seen when the number of particles rises above 10,000, which
implies that 10,000 particles are necessary and sufficient for this analysis. Figure 23 provides the weights W7(~L) (see Eq. (17))
in terms of the six parameters which have been identified. Only one peak (or mode) appears in the weight distribution of
every parameter. This means that the average values given by Eq. (17) can be adopted as the identified values of the
parameters.
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Figure 21. RMSEs between numerical results and observation data:
(a) displacement, (b) pore water pressure, and (c) earth pressure.
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Figure 23. Weights of identified parameters (N=10,000).
CONCLUSIONS

When a rock-fill dam is constructed, the mechanical behavior of the structure, such as deformation, must be predicted so as
to realize and confirm its safe construction. In order to predict the mechanical behavior, it is indispensable to know the

constitutive parameters of the materials used for the construction. However, there are usually some parameters which are
necessary, but not known in advance, or which are not accurate because of the significantly different conditions under which
the field and the laboratory tests are conducted. On the other hand, the settlement and pore water pressure in the dam are
monitored during its construction. Hence, these measured data can be utilized for the determination of the unknown
parameters and the correction of any inaccurate parameters. This study has attempted to identify the material parameters of
compression index C,, swelling index C;, and vertical yield stress ¢’ in the filter and rock zones of a real dam using the
observation data obtained during its construction. The PF, which is one of the data assimilation methods, has been applied to
this problem, and incorporated into the water-soil coupled FEM, for computing the deformation of the soil structure. The
findings obtained and lessons learned from this case study are summarized below.

e The PF has a great advantage in that the prediction step and the filtering step are completely separated when the SIS
(Sequantial Improtance Sampling) algorithm is employed. This enables the usage of any available program or
software for the deformation analysis without changing the code of the program, which is quite helpful when
applying the PF to the parameter identification of practical problems.

e  The numerical results obtained from the identified parameters agreed surprisingly well with the measured data,
which revealed the prominent applicability of the method presented in this paper to practical problems encountered
in the dam construction process. This case study has provided a successful example of predicting the deformation
of a dam during its construction.
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e In this case study, 10,000 particles, i.e., 10,000 sets of random values of parameters to be identified, were
considered to be necessary and sufficient. The relationship between the number of particles and the total NRMSEs
(Normalized Root Mean Square Error) was calculated with 2,000 to 15,000 particles. The relationship suggests
that the errors moderately decrease when the number of particles exceeds 10,000.
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