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ABSTRACT : This paper examines and compares the minimum horizontal acceleration that is needed to initiate uplift of the 

single-nave barrel vault and of the rocking frame which are the two most common masonry structural systems used to bridge 

a span. The paper concludes that regardless of the direction of the rupture of the buttresses, the single-nave barrel vault 

uplifts with a seismic coefficient, Ů, that is always smaller than the slenderness of the buttresses, s=b/h. In contrast, the 

rocking frame always uplifts with a seismic coefficient, Ů=b/h, regardless of the mass of its prismatic epistyle; therefore, the 

rocking frame has a superior seismic performance than the single-nave barrel vault. 
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INTRODUCTION  

 

The planar seismic stability analysis of a masonry structure that does not sustain tension can be analyzed in two steps. Step 

(a) is an equivalent static-equilibrium stability analysis and deals with the calculation of the minimum horizontal acceleration, 

üg
up, that is needed to rupture the structure at a minimum number of locations which are sufficient to convert the structure 

into a mechanism. Step (a) is a purely geometric problem which is independent of the size (scale) of the structure and depends 

only on its ñslendernessò. Step (b) deals with the post rupturing dynamic response analysis of the hinged structure that 

undergoes some rocking motion and involves the solution of the nonlinear equation of motion (Oppenheim 1992); while 

addressing satisfactorily the impact that happens whenever the motion reverses (De Lorenzis et al. 2007). Step (b) is a purely 

dynamic problem that involves the participation of the rotational inertia of the articulated portions of the hinged structure; 

therefore, the post dynamic stability of the hinged structure depends strongly on its size (Makris 2014a,b). 

 

This work focuses on identifying the lower hinging mechanism of the single-nave barrel vault that is a masonry arch supported 

on two vertical buttresses as schematically shown in Fig. 1(a,b). Accordingly, this work concentrates in addressing step (a) 

for the structural system shown in Fig. 1(a,b), since it is most relevant to a wide range of historic structures known as ñsingle-

nave barrel vaultò churches that were built in various parts of Europe as early as a millennia ago. For instance, Fig. 2(a) shows 

an exterior view of the church of Agia Marina, Frenaros, Cyprus of the 15th century, and Fig. 2(b) shows an exterior and 

interior view of the church of Saint Catherine, Larnaca, Cyprus of the 14th century. The configuration of an arch (or vault) 

that is supported on buttresses is also often encountered as a substructure of more complex masonry structures, such as 

romanesque or gothic cathedrals and byzantine churches, medieval palaces and castles or other simpler vaulted masonry 

structures which have been constructed throughout the world since the conception of the masonry arch (Huerta 2006, Roca 

et al. 2010). The planar analysis presented in this work assumes a plane-strain condition; therefore neglects the end-effects 

of the front and back walls. Accordingly, the rupturing values of the seismic coefficient, Ů, computed in this work represent 

the low limit.  

 

The level of ground shaking that is needed to initiate rupturing as calculated in step (a) does not challenge the ultimate stability 

of the structure, given that the structure possesses further post-uplift dynamic stability; however, it addresses the issue of 
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locating the imminent hinges and rupturing of the masonryðan issue that is of utmost interest to the preservation efforts of 

cultural heritage. 

 

 
 

Figure 1. Single nave barrel vault subjected to a horizontal ground acceleration, üg=Ůg. (a) Horizontal rupture at the base 

of the buttress, (b) oblique rupture, (c) the rocking frame. 

 

 
 

Figure 2. (a) Exterior view of the church of Agia Marina, Frenaros, Cyprus (15th century) and (b) exterior and interior 

view of the church of Saint Catherine, Larnaca, Cyprus (14th century). 

 

STEREOTOMY AND HINGE LOCATION  

 

In a structure that does not sustain tension, the only seismic resisting action is its own weight. When the lateral seismic forces 

overcome the stabilizing gravity forces the masonry structure ruptures at a minimum number of locations creating the lower 

hinging mechanism. Clearly, when hinging is imminent, a masonry structure that has finite thickness may rupture in a variety 

of ways depending on the size of the individual stones and the configuration of the joints (Alexakis and Makris 2015). For 

instance, for the simplest masonry structure that is the monolithic free-standing column, there is only one jointðthe interface 

at the base of the column and the location of the hingeðthat is the pivot point at its base known a priori. Consequently for 

the monolithic, free-standing column with base, b, and height, h, step (a) introduced earlier reduces to a simple static moment 

equilibrium given that the minimum uplift horizontal acceleration is merely üg
up=g(b/h)=gtanŬ.  

 

In the case of a circular arched monolith (Makris and Alexakis 2013, Alexakis and Makris 2014) with embrace angle, ɓ, 

midthickness radius, R, and thickness, t, that is about to become a four-hinge mechanism, rupturing can happen in a variety 

of waysðsay radial ruptures or vertical ruptures. When hinging is imminent, the weights of the articulated portions of the 

arched monolith depend on the direction of rupturing (stereotomy). Accordingly, the direction of rupturing (stereotomy) 

dictates the exact locations of the imminent hinges; and once the hinging mechanism has been established, one can compute 

the minimum horizontal acceleration needed to overcome the stabilizing gravity forces. 

 

In the case of a masonry barrel vault, the arch atop the buttresses is constructed with voussoirs with finite size so rupturing 

along the radial direction is most realistic and is adopted in this study. At the same time a masonry buttress is not a monolithic 

column since it consists of individual stones placed roughly in horizontal courses and laid with or without mortar between 
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the stones. In the event that the buttress is built out of large masonry blocks the rupture may happen along the horizontal 

direction and uplift as a monolithic column as shown in Fig. 1(a). In the event that the buttress is built out of smaller stones 

and the mortar has decayed with time, the buttress is incapable to sustain any tension and eventually develops an elongation 

failure along the compression free region (Heyman 1992, Ochsendorf 2002, Ochsendorf et al. 2004, Makris and Alexakis 

2015) as shown in Fig. 1(b). 

 

When a buttress that supports an arch is subjected to lateral inertial loading there are two types of lateral loads. The first type 

of lateral load originates from the inclined thrust force due to gravity that the arch is transferring at its springing at the head 

of the buttress and the second type of lateral load is the lateral inertial load from the ground shaking. The thrust lines and 

elongation failures of masonry buttresses subjected to these two types of loads were reviewed recently by Makris and Alexakis 

(2015) and are summarized in Fig. 3. In this figure, b and h are the width and height of the buttress, s=b/h is the slenderness, 

T is the resultant thrust force applied at the head of the buttress, Ů and q are coefficients of the uniform and inverse triangular 

lateral inertial loading, y(z) is the thrust line, where z is the independent variable (vertical axis) and y the dependent (horizontal 

axis), ty=Ty/(ɔbh) and tz=Tz/(ɔbh) are the normalized to the buttress weight horizontal and vertical components of the trust 

force T, where ɔ is the surface force density of the buttress and finally f(z) is the elongation fracture line that starts at a distance 

ze from the top of the buttress. Fig. 3 indicates that the inclined thrust force from the arch on the buttress (first row) creates 

an elongation failure that is a straight line (Ochsendorf et al. 2004); whereas, lateral inertial loads create elongation failures 

that are slightly curved lines. When the profile of lateral seismic loads is assumed uniform (second row), the elongation 

failure line is described by an error function (Heyman 1992), which is slightly concave outwards; whereas, when the profile 

of the lateral seismic load is an inverted triangle (third row), the elongation failure line can be only computed numerically 

(Makris and Alexakis 2015) and is slightly concave inwards. The three lines shown in Fig. 3 are mathematical results based 

on the idealization that the buttress is a continuous monolith that does not sustain tension. In reality, a masonry buttress 

consists of individual stones, some larger and some smaller and the elongation failure line may look more like the one shown 

in Fig. 4. Accordingly, in this study we examine the minimum uplift horizontal acceleration of a single-nave barrel vault 

where the ñdownstreamò buttress may rupture either at its base with a horizontal rupture as shown in Fig. 1(a) or along a 

straight inclined rupture as shown in Fig. 1(b). 

 

In this paper the variational methodology advanced by Alexakis and Makris (2014) is employed to find the limit equilibrium 

configuration of the single-nave barrel vault shown in Fig. 1(a,b), given that the buttresses that support the arch may develop 

an oblique elongation failure (Heyman 1992, Ochsendorf 2002, Ochsendorf et al. 2004, Makris and Alexakis 2015). 

 

PHYSICALLY ADMISSIBLE HINGING MECHANISMS OF A SINGLE -NAVE BARREL VAULT  

 

Alexakis and Makris (2017) recently showed that there are only two physically admissible hinging mechanisms for the single-

nave barrel vault, as shown in Fig. 5. If an arch that is capable to support its own weight is relatively slender and/or the 

buttresses relatively stocky, a 4-hinge lateral mechanism develops only within the arch, as shown in Fig. 5-left (mechanism 

I), while the buttresses do not participate in the mechanism. This is precisely the problem of identifying the limit equilibrium 

state of a circular masonry arch under lateral inertial and gravity loadsða problem that has been studied by Clemente (1998) 

and more recently by the authors (Alexakis and Makris 2014), who presented a rigorous variational formulation in an effort 

to liberate the limit state analysis from the need to identify the limiting thrust line. Accordingly, the exact locations of the 

imminent hinges and the level of horizontal ground acceleration Ůg that is needed to mobilize the hinging mechanism I in Fig. 

5 has been presented in detail in the paper by Alexakis and Makris (2014). It is worth noting, as it was first recognized by 

Clemente (1998), that if the arch is subjected to a lateral load (say from the left to the right), the extreme right extrados hinge 

always happens at the right springing A, while the extreme left intrados hinge D may happen within the arch at a location 

above the left springing (ñone springing mechanismò), or at the left springing (ñtwo springing mechanismò). In that way, the 

location of hinge A is known, and the analysis searches for the three unknown locations of hinges B, C and D, together with 

the level of the lateral load that initiates the mechanism. 

 

If an arch capable to support its own weight is relatively thick and/or the buttresses relatively slender, the location of the 

extrados hinge A shall be transferred to the bottom right corner of the ñdownstreamò buttress, in analogy with the arch 

mechanism, and the analysis searches again for the three unknown locations of hinges B, C and D, together with the level of 

the lateral load that initiates the mechanisms II, shown in Fig. 5-right. 

 

The next section applies the principle of stationary potential energy, initially employed in Makris and Alexakis (2012, 2013) 

and Alexakis and Makris (2013b) to calculate the exact location of the hinges and the level of the limit horizontal inertial 

loading, Ůg, for any given geometry of the single-nave barrel vault structure that does not sustain tension. 
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Figure 3. Thrust lines, fracture lines and expressions of the critical loads according to elongation failure of masonry 

buttresses with slenderness s=b/h when subjected to three different loading patterns. 
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Figure 4. Schematic of elongation failure of a buttress with variable stone size and nearly-zero tensile strength at the joints. 

 

 

Figure 5. Admissible hinging mechanisms for buttresses that are allowed to develop horizontal ruptures. 

 

MECHANISM II (SEMI -GLOBAL MECHANISM) THAT INITIATES A HORIZONTAL RUPTURE AT THE 

BASE OF THE BUTTRESS 

 

With reference to Fig. 6-right, consider a circular arch with embrace angle, ɓ, mid-thickness radius, R, and thickness, t, that 

is supported on two rectangular buttresses with height, h, and width, b. The structure is subjected to a constant horizontal 

ground acceleration Ůg (say from the left to the right). Prior to hinging, the structure translates as a rigid body; therefore, the 

lateral inertial loading will assume a profile proportional to the vertical distribution of the mass. 

Moment equilibrium of segment 2 (segment BC) about hinge C gives 
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In Eq. (1), TBx and TBy are the cartesian components of the unknown thrust force TB acting at hinge B (Fig. 6 top-center), while 

W2, x2 and y2 are the weight and the cartesian coordinates of the center of gravity of segment 2, which are functions of the 

unknown rupture locations ű1 and ű2 (Alexakis and Makris 2017). Moment equilibrium of the combined segment 2-3 

(segment BCD) about hinge D gives 
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Figure 6. Formation of a four-hinge mechanism for the case where the buttresses are allowed to develop horizontal 

ruptures (right) or a straight oblique elongation failure (left) 

 

In Eq. (2), W2-3, x2-3 and y2-3 are the weight and the cartesian coordinates of the center of gravity of the combined segment 2-

3, which are functions of the unknown rupture locations ű1 and ű3 (Alexakis and Makris 2017). Moment equilibrium of 

segment 1 (segment AB) about hinge A gives 
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In Eq. (3), ɓɞ=( -́ɓ)/2 is the angle that forms the springing with the horizontal axis and W1, x1 and y1 are the weight and the 

cartesian coordinates of the center of gravity of segment 1, which are functions of the unknown rupture location ű1 (Alexakis 

and Makris 2017).  

 

Substitution of Eqs. (1) and (2) into Eq. (3) eliminates the unknown force components TBx and TBy and yields a transcendental 

equation which involves the geometric parameters ɓ, t/R, b/R, h/R, the rupture locations ű1, ű2, ű3 and the seismic coefficient 

Ů. In the event of a demand assessment analysis (i.e., find the level of loading that a given structure can sustain) the geometry 

of the buttressed arch is given and the analysis searches for the seismic coefficient Ů that initiates the hinge mechanism. The 

solution of the above mentioned transcendental equation can then be expressed in the form  

 

),,( 321 fffe f=  (4) 

 

Our analysis proceeds with the application of the principle of stationary potential energy, which states that the geometrically 

admissible hinged mechanism is in an equilibrium state if and only if the total potential energy of the system is stationary 

(ŭV=0). Alexakis and Makris (2017) showed that the total potential energy, V, can be expressed as a function of the three 

unknown locations ű1, ű2 and ű3, and is stationary when (Shames and Dym 1985, among others) 
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