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ABSTRACT: This paper showcases novel underground stratification based on sparse machine learning (SML) methods, 

including sparse Bayesian learning (SBL) and least absolute shrinkage selection operator (Lasso). The SML methods 

proposed by the authors were applied to two- and three-dimensional underground stratification of actual sites, Odagawa 

Riverbank (Okayama, Japan) and New Lock (Terneuzen, the Netherlands), to demonstrate their performances. Cone 

penetration test (CPT) data were available in both sites, and they were converted to the soil behavior type (SBT) index for 

the underground stratification analysis. The trends of Ic/SBT profiles and their distribution colormaps estimated by the two 

methods were compared to discuss the methodological characteristics. For the Odagawa Riverbank case, the detection ratio 

of SBT obtained by the two methods was also compared to investigate the estimation accuracy in terms of stratification 

ability. 

 
KEYWORDS: underground stratification, sparse machine learning, cone penetration test, soil stratification, soil behavior 
type index. 
 
SITE LOCATION: Geo-Database 
 
INTRODUCTION 

 
In many countries across the world, the subsurface space is gradually becoming an integral part of urban planning. This 
requires adequate subsurface models for the design of geotechnical structures such as foundations of buildings, bridges, 
tunnels, etc. In particular, the need for three-dimensional (3D) subsurface modeling is rapidly increasing nowadays, because 
it provides more spatial insights, more precise and objective representations of real-world phenomenon, and better 
interpretation of spatial relations. A necessary step in subsurface modeling is underground stratification. 
 
Underground stratification based on data can be formulated as a machine learning task, and several machine learning (ML) 
methods can be useful for underground stratification. One of the ML methods known as sparse machine learning (SML) (e.g., 
MacKay 1992; Tibshirani 1996; Tipping 2001) has recently received much attention for its ability of managing several data 
processing and mining tasks. According to the general principle of sparsity, a phenomenon should be represented with as few 
variables as possible. This approach, which essentially favors simple models over more complex ones, is central to many 
research fields, and it can also be promising in geotechnical engineering.  
 
Ching and Phoon (2017) proposed a method for characterizing one-dimensional (1D) spatial variation of soil property in the 
depth direction based on Sparse Bayesian Learning (SBL, Mackey 1992; Tipping 2001). This method characterizes three 
types of uncertainties: (1) the functional form (shape) of the trend function; (2) the parameters of the trend function (e.g., 
intercept and gradient); and (3) the random field parameters describing spatial variation about the trend function, namely 
standard deviation (σ) and scale of fluctuation (δ), within a consistent Bayesian framework. Recently, they extended this SBL 
method to 3D settings (Ching et al. 2020) and non-lattice data set (Ching et al. 2021). Shuku (2019) and Shuku et al. (2020) 
focused on another SML method, the least absolute shrinkage selection operator (Lasso, Tibshirani 1996), and developed a 
method for consistently estimating trends and detecting layer boundaries in depth-dependent soil data. An extension of the 
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Lasso method to practical 3D settings was achieved by Shuku and Phoon (2021). SML-based methods have recently received 
much attention in geotechnical engineering: Wang and Zhao (2017) proposed Bayesian compressive sampling for estimating 
soil property profile and its uncertainty using limited number of data, and Hu et al. (2020) and Zhao and Wang (2020) applied 
Bayesian supervised learning to interpolation and stratification of multi-layer soil property profile. 
 
Many past studies on underground stratification mainly focused on 1D settings, and there is limited research on multi-
dimensional underground stratification despite its significant demand (Hu and Wang 2020; Wang et al. 2020). The purpose 
of this paper is to showcase real case histories on 2D/3D underground stratification using the latest SML methods proposed 
by the authors and to compare between the two methods based on the “law of parsimony.” The main purpose of this paper is 
not to present the details of the theories and derivations. Please refer to the articles published by the authors for more 
theoretical details. 
 
This paper is structured as follows. Section 2 briefly introduces the two SML methods. Section 3 outlines two real sites for 
underground stratification, Odagawa Riverbank site (Okayama, Japan) for a 2D example and New Lock site (Terneuzen, the 
Netherlands) for a 3D example. Section 4 shows the results of underground stratification by the two methods and briefly 
discusses the differences between the two methods. The summary is presented in Section 5. 
 
SPARSE MACHINE LEARNING 

 
This section outlines the two SML methods, SBL (MacKay 1992; Tipping 2001) and Lasso (Tibshirani 1996; Shuku 2019; 
Shuku et al. 2020; Shuku and Phoon 2021). For simplicity, we focus on a 1D setting herein. The details for 2D/3D settings 
can be found in Ching and Phoon (2017) and Ching et al. (2020, 2021) for SBL and in Shuku (2019), Shuku et al. (2020), 
and Shuku and Phoon (2020) for Lasso. 
 
Suppose that we are given the 1D dataset of 1{ , }N

i i iz y =  where zi is depth, yi is soil property, and N is the number of data points. 
Let us denote y = [y1 y2 … yN]TRN1, and z = [z1 z2 … zN]TRN1. The trend function, t(z,w)RN1, is modeled as the linear 
combination of a collection of basis functions (BFs): 
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where wj is an unknown coefficient; w = [w1 … wM]TRM1; j is the jth BF; and j(z) = [j(z1) … j(zN)]TRN1. There are 
many possible choices for the BFs, such as polynomials, sigmoidal, wavelet, and Legendre polynomials (Bishop 2006). The 
data y is modeled as the summation between the trend and noise: 

( , )= +y t z w ε                                                                                                                                                                   (2) 

where RN1 is a zero mean Gaussian random noise with variance 2. The likelihood function of the model is given by: 
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A straightforward approach to estimate w and 2 is by maximizing Eq. (3). This, however, usually leads to an excessively 
complex model that over-fits the data. The Bayesian approach has been widely used to avoid this over-fitting problem. Based 
on Bayes’ rule, the posterior probability density function (PDF) of w and , p(w,  | y), is given by: 
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where p(w, ) is the prior PDF of w and , and p(y) is the PDF of y. Both SBL and Lasso can be derived from Bayes’ rule, 
Eq. (5), and the fundamental concepts of the methods are given in the following sub-sections. 
 
Sparse Bayesian Learning (SBL) 

 
The idea of SBL was originally proposed by MacKay (1992). In SBL, a zero-mean Gaussian prior distribution is assigned 
for w: 

1

( | ) ( | 0, )
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=w s
M

i i

i

p N w s                                                                                                                                                      (6) 

where si represents the standard deviation of wi, and s denotes (s, s2, … , sM)T. The optimal values of s and  are determined 
by maximizing the following marginal likelihood function (Tipping 2001): 
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where I is identity matrix, and  = diag{s1
2, s2

2, … , sM
2}. In the resulting optimal (s, s2, … , sM), many si’s go to zero 

(Tipping 2001). The BFs associated with these zero si’s play no role in the predictions and so are pruned out, resulting in a 
sparse model. 
 
Ching and Phoon (2017) re-formulated the original SBL proposed by Tipping (2001) to incorporate correlated noise as well 
as to quantify the statistical uncertainties in the trend function and scale of fluctuation. Ching et al (2020) extended the SBL 
method to 3D, and this SBL can also simulate conditional random fields of y. Moreover, Ching et al (2021) further revised 
the SBL method such that it can handle incomplete sounding data. 
 
Least Absolute Shrinkage Selection Operator (Lasso) 

 
Lasso was originally proposed by Tibshirani (1996) and has been widely used in statistical science and image/vision analysis. 
In Lasso, the following variables {w1, w2, …, wn}T are used to discretize the trend function into a piecewise function: 

 T

1 2, ,..., nw w w= =t w                                                                                                                                                          (8) 

Namely, yi = ti + i = wi + i. In addition, Lasso assumes the following prior PDF for w: 

( )1
( | ) expp   −w w                                                                                                                                                   (9

) 

where  is the diversity parameter in the Laplace prior PDF. In Eq. (5), the normalization term p(y) is often left out, and if 
the residual  = y – t is independent of w, the posterior PDF of (w, ) can be written as: 

( , | ) ( | , ) ( , )p p p   w y y w w                                                                                                                                   (10) 

By substituting Eqs. (3) and (8) into (9), we finally get the maximum a posteriori (MAP) estimate of w as: 𝒘MAP = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 {− 12 ‖𝒚 − 𝒘‖22 − 𝜆‖𝒘‖1}                                                                                                                         (11) 

where  = 2; || . ||1 is an 1 norm, which stands for sum of the absolute values of w. Unlike a Gaussian prior, the Laplace 
prior has “corner (non-differentiable) points” and it encourages parameter vector w to be sparse; i.e., most of the elements of 
vector w become zero. 
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Shuku et al. (2020) developed a method for estimating trends and detecting layer boundaries in depth-dependent soil data 
based on Lasso. Shuku and Phoon (2020) developed a Lasso method for 3D geotechnical subsurface modeling, called 
geotechnical Lasso (GLasso), and an efficient algorithm to solve 3D problems. 
 
In the following, the method developed by Ching and Phoon (2017) and Ching et al (2020, 2021) is simply referred to as 
SBL, whereas the method developed by Shuku et al. (2020) and Shuku and Phoon (2021) is simply referred to as Lasso. 
 
CASE HISTORIES 

 
SBL and Lasso, as outlined in the previous section, were applied to two real case histories with cone penetration test (CPT) 
data. This section briefly outlines these case histories. 
 
Odagawa Riverbank, Okayama, Japan 

 
Odagawa Riverbank is located approximately 27 km west of Okayama City, Okayama, Japan, on the north side of the 
Odagawa River. CPTs were performed on the berm, and the layout of CPTs is shown in Figure 1. The layout consists of 15 
CPTs at a spacing of 5 meters. The cone tip resistance (qt), sleeve friction (fs), and pore pressure (u) were recorded with 5 cm 
depth resolution for each sounding. Some qt and fs values were negative, and this negative-value issue was resolved by the 
procedure indicated in the APPENDIX. The depth profile of the soil behavior type index (Ic) and soil behavior type (SBT) 
are shown in Figures 2 and 3. The Ic and SBT are based on the soil classification system proposed by Robertson (1990, 2016) 
and Robertson and Wride (1998), as summarized in Table 1. 
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Figure 1. Layout of CPTs at Odagawa Riverbank site. 

 

 
 

Figure 2. Depth profile of Ic at Odagawa Riverbank site. 
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Figure 3. Depth profile of SBT at Odagawa Riverbank site. 

 
Table 1. Soil behavior type index by Robertson (1990, 2016) and Robertson and Wride (1998). 

 

Soil behavior type index, Ic Zone Soil behavior type (SBT) 

Ic < 1.31 7 Gravelly sand to dense sand 

1.31 < Ic < 2.05 6 Sands: clean sand to silty sand 

2.05 < Ic < 2.60 5 Sand mixtures: silty sand to sandy silt 

2.60 < Ic < 2.95 4 Silt mixtures: clayey silt to silty clay 

2.95 < Ic < 3.60 3 Clays: silty clay to clay 

Ic > 3.60 2 Organic soils: peats 

 
New Lock, Terneuzen, the Netherlands 

 
The New Lock site is located approximately 100 km southwest of Rotterdam, the Netherlands. The 427-meter-long New 
Terneuzen Lock is being constructed on the existing Terneuzen locks’ complex and is designed to provide better access to 
the ports of Ghent and Terneuzen, as well as to promote a faster flow of shipping between the Netherlands, Belgium, and 
France. The layout of the CPTs is shown in Figure 4. The depth of the CPTs ranges from 3 to 70 m, and the horizontal spacing 
of the CPTs ranges from 0.36 to 2,835 m. In total, 98 CPTs were performed at this site. We focused on a small area containing 
51 CPTs shown in Figure 4 for the underground stratification. The Ic profiles of A–A and B–B cross sections are shown in 
Figure 5. 
 

 
 

Figure 4. Layout of CPTs at the New Lock site. 
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(a) A – A                                                                                  (b) B – B  

 

Figure 5. Depth profiles of Ic at A-A and B-B sections. 

 
RESULTS OF UNDERGROUND STRATIFICATION USING SBL AND LASSO 

 
In this section, the analysis results of SBL and Lasso for the case histories are demonstrated. 2D underground stratification 
was performed for the riverbank site, and 3D analysis was performed for the New Lock site. Brief descriptions on the 
numerical setup of SBL and Lasso are as follows: In SBL, the estimation results are obtained from the following three steps: 
1) selection of BFs, 2) Drawing w, , and scale of fluctuation samples, and 3) conditional 3D random field simulation. In this 
paper, shifted Legendre polynomials were used as BFs, and BFs were selected by maximizing the marginal likelihood 
function. In step 2, the samples were drawn from marginal likelihood using an improved version of transitional Markov Chain 
Monte Carlo (iTMCMC) (Ching and Cheng 2007; Betz et al. 2016; Ching and Wang 2017). In Lasso, the estimates were 
obtained by maximizing/minimizing objective function (Eq. (11)), and we used the alternating direction method of multiplier 
(ADMM) (Boyd et al. 2010) to optimize the function. The regularization parameters  for all the simulations were selected 
using the L-curve method (Hansen 1992) in this paper. As previously stated, this paper mainly demonstrates the analysis 
results of SBL and Lasso, and the details of their analysis setups are not presented. 
 
To evaluate the performance of the two methods, the root-mean-square error (RMSE) of Ic and detection ratio (DR) of SBT 
are provided, which are defined by the following equations: 
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where yi is the measured Ic data at the ith depth, xi is the estimated Ic value at the ith depth, and SBT(yi) and SBT(xi) are the 
SBTs correspond to yi and xi. In order to compute the RMSE, a point estimate for Ic is needed. Lasso can readily produce a 
point estimate for Ic, which is the maximum a posteriori (MAP) estimate. However, SBL does not directly produce a point 
estimate. Instead, SBL produces samples of Ic. In principle, the significance of the sample mode of the Ic samples is similar 
to that of MAP. However, it is technically more challenging to compute the sample mode for the Ic samples of SBL than the 
sample mean or sample median. The sample mode is not a robust point estimate, compared to the sample mean and sample 
median. In this study, as opposed to adopting the sample mode of the SBL Ic samples, the sample median is adopted as the 
point estimate for SBL since: 1) the sample median is easy to compute, 2) the sample median is less noisy than the sample 
mode, and 3) it is found that the sample median of the SBL Ic samples is close to their sample mode for the two case histories. 
 
Odagawa Riverbank Site 

 
In this case history, we performed leave-one-out cross-validation (LOOCV) to evaluate the performance of the methods, 
which is widely used in the machine learning community to evaluate the performance of machine learning methods. In  
LOOCV, the Ic data of one CPT are used for validation and the Ic data for the remaining CPTs are used for training. Figure 6 
shows the results of LOOCV, which compares the Ic results estimated by the two SML methods with the measured Ic profiles. 
The black lines indicate the measured Ic data, the blue continuous lines and dashed lines indicate median and 95% upper/lower 
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bounds of the conditional Ic random fields simulated by SBL, and the red continuous lines indicate the MAP estimates by 
Lasso. Both methods reasonably capture the measured Ic trends.  
 
Table 2 summarizes the RMSEs for LOOCV on the Ic profiles. The MAP by Lasso and median by SBL were used in 
computing these RMSEs. Since the Ic profiles estimated by the two methods are similar, the RMSEs for the two methods are 
also analogous. The SBL method provides the posterior PDF of the estimates, which is more informative than the point 
estimate by Lasso. Lasso, nevertheless, can effectively detect sharp changes (such as layer boundaries) in the Ic trend due to 
the nature of the 1 norm in Eq. (10). Moreover, the Ic trend identified by Lasso is "cleaner" (fewer oscillating details) than 
by SBL. Unlike continuous BF-based methods, Lasso does not require BFs. This is a notable advantage of Lasso. 
 
Figure 7 compares the SBT profiles calculated based on the Ic results in Figure 6. In the figure, the black lines indicate the 
measured SBT, whereas the red and blue lines are the SBT profiles by SBL and Lasso, respectively. The SBT profile for 
Lasso is calculated by the Ic – SBT mapping (Table 1) based on the Ic result for Lasso in Figure 6. The determination of the 
SBT profile for SBL is more complicated. First, the conditional Ic random fields simulated by SBL are converted to SBT 
random fields. The most probable SBT at a location is determined as the mode of the SBT samples at that location. The SBT 
profile for SBL is simply the profile of the most probable SBT. Due to the sparsity property of SBL and Lasso, the 
stratification results estimated by SBL and Lasso (red and blue lines) tend to be simpler than those directly estimated by the 
measured SBT (black lines). 
 
Table 3 summarizes the detection ratios (DRs) of SBL and Lasso. The average DRs for SBL and Lasso are 0.83 and 0.81, 
respectively. Figures 8 and 9 show the colormaps of the Ic and SBT distributions estimated by SBL and Lasso. In Figure 8, 
Lasso tends to produce an Ic distribution that is cleaner (fewer oscillating details) than that produced by SBL. 
 

 

Figure 6. Estimated Ic profiles by SBL and Lasso. 

 

 

Figure 7. Estimated SBT profiles by SBL and Lasso. 
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Table 2. RMSEs for the Ic profiles (Odagawa Riverbank site). 

 

No. 101 102 103 104 2 105 106 107 108 109 110 111 112 113 3 

SBL 
0.02

0 
0.01

5 
0.02

3 
0.01

3 
0.04

2 
0.01

1 
0.02

1 
0.01

4 
0.01

8 
0.02

7 
0.00

9 
0.01

5 
0.01

3 
0.01

4 
0.01

1 

Lass

o 

0.01
3 

0.01
8 

0.02
3 

0.01
7 

0.05
0 

0.01
1 

0.02
3 

0.01
6 

0.01
7 

0.02
4 

0.01
0 

0.01
1 

0.01
4 

0.01
2 

0.01
7 

 

Table 3. Detection rates for the SBT profiles (Odagawa Riverbank site). 

 

No. 101 102 103 104 2 105 106 107 108 109 110 111 112 113 3 

SBL 0.83 0.77 0.83 0.81 0.68 0.88 0.73 0.81 0.83 0.85 0.86 0.94 0.91 0.93 0.84 

Lasso 0.76 0.71 0.83 0.78 0.57 0.89 0.74 0.77 0.89 0.87 0.88 0.92 0.91 0.96 0.81 

 

 
 

Figure 8. Color map of estimated Ic by Lasso (top) and SBL (bottom). 

 

 
 

Figure 9. Color map of estimated SBT by Lasso (top) and SBL (bottom). 

 

New Lock Site 

 
In this example, LOOCV was not performed because of the high computational cost, and we simply conducted 3D 
underground stratification using all 51 CPTs. Therefore, the results presented in this section do not reflect the predictive 
ability of the estimated model. Developing the method that can achieve training and validation for realistic 3D problems 
within a reasonable timeframe is a critical future objective. 
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For SBL, 10 CPTs with short depth ranges were not analyzed (only 41 CPTs were analyzed) to speed up the SBL algorithm 
significantly. These 10 CPTs all have long CPTs in their close proximity, so the removal of these short CPTs should only 
have minimal impact. For Lasso, all 51 CPTs were analyzed. Figure 10 shows the estimated Ic profiles on the A – A and B – 
B sections. In the figure, the black lines indicate the measured Ic data, the blue continuous and dashed lines indicate the 
median and 95% bounds of the conditional Ic random fields simulated by SBL, and the red lines indicate the trends estimated 
by Lasso. Some CPTs (such as S49 and DKMP3) that are close to the A – A and B – B sections are projected to the nearest 
respective locations, and the measured Ic profiles of these projected CPTs are also shown in Figure 10 for comparison. The 
Ic median and 95% bounds obtained by SBL tend to follow the general trends for the measured Ic profiles of nearby CPTs. In 
contrast, the trends estimated by Lasso tend to be simple (close to constant). In particular, Lasso detects a change point (a 
possible layer boundary) around the depth of 25 m. 
 
Figure 11 compares SBT profiles calculated based on the Ic results in Figure 10. Although the measured SBT identifies many 
thin layers, SBL and Lasso provide simple stratification results: only a single layer. Tables 4 and 5 summarize the DRs for 
the A – A and B – B sections, respectively. The average value of DRs for SBL and Lasso are identical, which is 0.79. Note 
that LOOCV is not performed for the New Lock case, so the DRs in Tables 4 and 5 may not reflect the actual prediction 
capacity. 
 

 
 

(a) A – A section 

 
 

(b) B – B section 

 

Figure 10. Estimated Ic profiles by SBL and Lasso. 
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(a) A – A section 

 

 
 

(b) B – B section 

 

Figure 11. Estimated SBT profiles by SBL and Lasso. 

 
Table 4. Detection rates for the SBT profiles (A – A, New Lock site). 

 

No. S49 DKMP3 S39 S38 S52 
DKMP14

A-B 

SBL 0.77 0.78 0.71 0.70 0.63 0.86 

Lasso 0.79 0.83 0.71 0.68 0.58 0.90 

 
Table 5. Detection rates for the SBT profiles (B – B, New Lock site). 

 

No. S47 S41 S40 S38 S37 S35 S31 

SBL 0.76 0.86 0.87 0.70 0.91 0.86 0.91 

Lasso 0.93 0.73 0.95 0.68 0.90 0.78 0.81 

 
Figures 12 and 13 show the colormaps of the Ic and SBT distributions on the A – A and B – B sections estimated by SBL and 
Lasso. For SBL, only the colormap for median Ic is shown (95% bounds are not shown). In Figure 12, Lasso tends to produce 
an Ic distribution that is cleaner (with sharp changes) than that produced by SBL. In the SBT colormap (Figure 13), both 
methods produce simple stratification and identify only a single layer (SBT 6: clean sand to silty sand). 
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(a) A–A section 

 
(b) B–B section 

Figure 12. Colormap of estimated Ic by Lasso (top) and SBL (bottom). 

 
(a) A–A section 

 
(b) B–B section 

Figure 13. Colormap of estimated SBT by Lasso (top) and SBL (bottom). 
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CONCLUSION 

 
This paper showcased novel underground stratification based on SBL and Lasso for two case histories: the Odagawa 
Riverbank (Okayama, Japan) and New Lock (Terneuzen, the Netherlands). Cone penetration test (CPT) data were available 
in both sites, and the Robertson system and soil behavior type (SBT) index were used for the underground stratification. The 
Ic/SBT profiles and their spatial distribution were estimated by SBL and Lasso. Although both methods provided similar 
results, Lasso tends to produce simpler stratification results than SBL. However, SBL can produce the posterior PDF of 
estimates, which can be useful for reliability-based design. Lasso, on the other hand, is capable of detecting layer boundaries 
without the need to choose basis functions. This is a notable advantage for underground stratification. Some real case histories 
have been used in the recent papers on SML-based methods (Hu and Wang 2020; Wang et al. 2020), and analyzing their case 
histories using SBL and Lasso for comparison is another interesting topic for future study. 
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APPENDIX 

 
Negative values of qt and fs can be obtained in practice, and the CPT data measured at the Odagawa Riverbank site have this 
negative-value issue. This issue usually happens in very soft normally consolidated soils and highly compressible peat (e.g., 
Sandven 2010). Boylan et al. (2008) investigated this issue and reported that the temperature gradient can result in significant 
(positive or negative) shifts in the cone measurements. This APPENDIX describes our approach to handle the negative values 
of qt and fs.  
 
The soil behavior type index (Ic) proposed by Robertson (1990) depends on the normalized cone resistance (Qt) and friction 
ratio (Fr). The bounds of 1 ≤ Qt ≤ 1,000 and 0.1 ≤ Fr ≤ 10 are considered practical. In fact, these are the bounds for the Qt–Fr 
chart developed by Robertson (1990). Figure 14a shows the Qt–Fr plot for the data points for a CPT that contains negative qt 
and fs values. Some Qt–Fr data points are located outside of the practical bounds. It is assumed that these data points are 
contaminated by erroneous shifts in qt and fs. By adding a minimal amount of counter-shifts (denoted by qt and fs) to the 
original qt and fs values, it is possible to contain all Qt–Fr data points inside the bounds. The procedure is as follows. 

1. Calculate Qt  and Fr based on the original data with negative qt and fs values. 

2. For each CPT, identify the minimum values of qt and fs such that all Qt–Fr data fall into the bounds, 1 ≤ Qt ≤ 1000 
and 0.1 ≤ Fr ≤ 10. 

3. Repeat the prior two steps for all CPTs and find the qt and fs values that work for all CPTs. 

We ultimately got qt = +1700 kN and fs = +18 kN, and Figure 14b shows the Qt–Fr plot based on the shifted qt and fs. 

           
(a) Original data                                                              (b) Shifted data 

Figure 14. Qt –Fr diagram. 

http://140.112.12.21/issmge/tc304.htm?=6
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